login
A064060
Number of connected, homeomorphically irreducible (also called series-reduced) trees with n >= 2 labeled leaves (numbers in nondecreasing order).
3
1, 1, 1, 3, 1, 10, 15, 1, 10, 15, 15, 45, 60, 90, 1, 21, 35, 70, 105, 105, 105, 105, 210, 315, 420, 630, 630, 1, 28, 35, 56, 105, 168, 210, 210, 280, 280, 280, 315, 420, 420, 560, 560, 840, 840, 840, 1260, 1260
OFFSET
2,4
COMMENTS
The number of entries of row n of this array is A007827(n), n >= 2.
With v the total number of nodes (vertices), e the number of edges (links), n >= 2 the number of edges ending in a degree 1 node (leaves), i the number of edges which end in nodes with degree >=3 (internal edges) and v_{d} the number of nodes of degree d=1,3,4,... one has: v = e+1 = n + Sum_{d>=3}v_{d}, i = e-n, Sum_{d>=3}d*v_{d} = 2(v-1)-n.
EXAMPLE
Irregular array starts:
{1};
{1};
{1, 3};
{1, 10, 15};
{1, 10, 15, 15, 15, 45, 60, 90};
{1, 21, 35, 70, 105, 105, 105, 105, 210, 315, 420, 630, 630};
{1, 28, 35, 56, 105, 168, 210, 210, 280, 280, 280, 315, 420, 420, 560, 560, 840, 840, 840, 1260, 1260, 1680, 1680, 1680, 1680, 2520, 2520, 2520, 2520, 3360, 5040, 5040};
...
CROSSREFS
The row sums give A000311(n-1), n >= 2. Cf. A007827.
Sequence in context: A281000 A146154 A068438 * A176740 A370258 A134991
KEYWORD
nonn,tabf
AUTHOR
Wolfdieter Lang and Christoph Mayer (Christoph.Mayer(AT)dlr.de), Sep 13 2001
STATUS
approved