login
A370258
Triangle read by rows: T(n, k) = binomial(n, k)*binomial(2*n+k, k), 0 <= k <= n.
0
1, 1, 3, 1, 10, 15, 1, 21, 84, 84, 1, 36, 270, 660, 495, 1, 55, 660, 2860, 5005, 3003, 1, 78, 1365, 9100, 27300, 37128, 18564, 1, 105, 2520, 23800, 107100, 244188, 271320, 116280, 1, 136, 4284, 54264, 339150, 1139544, 2089164, 1961256, 735471, 1, 171, 6840, 111720, 921690, 4239774, 11306064
OFFSET
0,3
COMMENTS
Compare with A063007(n, k) = binomial(n, k)*binomial(n+k, k), the table of coefficients of the shifted Legendre polynomials P(n, 2*x + 1).
FORMULA
n-th row polynomial R(n, x) = Sum_{k = 0..n} binomial(n, k)*binomial(2*n+k, k)*x^k = (1 + x)^n * Sum_{k = 0..n} binomial(n, k)*binomial(2*n, k)*(x/(1 + x))^k = Sum_{k = 0..n} A110608(n, n-k)*x^k*(1 + x)^(n-k).
(x - 1)^n * R(n, 1/(x - 1)) = Sum_{k = 0..n} binomial(n,k)*binomial(2*n, n-k)*x^k = the n-th row polynomial of A110608.
R(n, x) = hypergeom([-n, 2*n + 1], [1], -x).
Second-order differential equation: ( (1 + x)^n * (x + x^2)*R(n, x)' )' = n*(2*n + 1)*(1 + x)^n * R(n, x), where the prime indicates differentiation w.r.t. x.
Equivalently, x*(1 + x)*R(n, x)'' + ((n + 2)*x + 1)*R(n, x)' - n*(2*n + 1)*R(n, x)' = 0.
Analog of Rodrigues' formula for the shifted Legendre polynomials:
R(n, x) = 1/(1 + x)^n * 1/n! * (d/dx)^n (x*(1 + x)^2)^n.
Analog of Rodrigues' formula for the Legendre polynomials:
R(n, (x-1)/2) = 1/(n!*2^n) * 1/(1 + x)^n *(d/dx)^n ((x - 1)*(x + 1)^2)^n.
Orthogonality properties:
Integral_{x = -1..0} (1 + x)^n * R(n, x) * R(m, x) dx = 0 for n > m.
Integral_{x = -1..0} (1 + x)^n * R(n, x)^2 dx = 1/(3*n + 1).
Integral_{x = -1..0} (1 + x)^(n+m) * R(n, x) * R(m, x) dx = 0 for m >= 2*n + 1 or m <= (n - 1)/2.
Integral_{x = -1..0} (1 + x)^k * R(n, x) dx = 0 for n <= k <= 2*n - 1;
Integral_{x = -1..0} (1 + x)^(2*n) * R(n, x) dx = (2*n)!*n!/(3*n+1)! = 1/A090816(n).
Recurrence for row polynomials:
2*n*(2*n - 1)*((9*n - 12)*x + 8*n - 11)*(1 + x)*R(n, x) = (9*(3*n - 1)*(3*n - 2)*(3*n - 4)*x^3 + 3*(3*n - 1)*(3*n - 2)*(20*n - 27)*x^2 + 6*(3*n - 2)*(20*n^2 - 34*n + 9)*x + 2*(32*n^3 - 76*n^2 + 50*n - 9))*R(n-1, x) - 2*(n - 1)*(2*n - 3)*((9*n - 3)*x + 8*n - 3)*R(n-2, x), with R(0, x) = 1, R(1, x) = 1 + 3*x.
Conjecture: exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (1 + 3*t)*x + (1 + 8*t + 12*t^2)*x^2 + ... is the o.g.f. for A102537. If true, then it would follows that, for each integer t, the sequence u = {R(n,t) : n >= 0} satisfies the Gauss congruences u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all primes p and positive integers m and r.
R(n, 1) = A114496(n); R(n, -1) = (-1)^n * A000984(n).
R(n, 2) = A339710(n); R(n, -2) = (-1)^n * A026000(n).
(2^n)*R(n, -1/2) = A234839(n).
EXAMPLE
Triangle begins
n\k| 0 1 2 3 4 5 6 7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1
1 | 1 3
2 | 1 10 15
3 | 1 21 84 84
4 | 1 36 270 660 495
5 | 1 55 660 2860 5005 3003
6 | 1 78 1365 9100 27300 37128 18564
7 | 1 105 2520 23800 107100 244188 271320 116280
...
MAPLE
seq(print(seq(binomial(n, k)*binomial(2*n+k, k), k = 0..n)), n = 0..10);
CROSSREFS
A114496 (row sums), A000984 (alt. row sums unsigned), A005809 (main diagonal), A090763 (first subdiagonal), A014105 (column 1).
Sequence in context: A068438 A064060 A176740 * A134991 A212930 A225725
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Feb 13 2024
STATUS
approved