|
|
A090763
|
|
a(n) = (3*n+3)!/(3*n!*(2*n+2)!).
|
|
4
|
|
|
1, 10, 84, 660, 5005, 37128, 271320, 1961256, 14060475, 100150050, 709634640, 5006710800, 35197176924, 246681069040, 1724337127920, 12025860872784, 83702724824775, 581558091471630, 4034231805704100, 27945630038703300
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 1/(Integral_{x=0..1} (x^(2/3)-x)^n dx).
a(n) = 1/(Integral_{x=0..1} (x-x^1.5)^n dx).
G.f.: Hypergeometric2F1(4/3, 5/3, 3/2, 27*x/4). - Stefano Spezia, Oct 18 2019
G.f.: (-(3*sqrt(4-27*x)*csc(arcsin((3*sqrt(3*x))/2)/3)^2)/((4*(4-27*x)^(3/2)))+(sqrt(3)*cot(arcsin((3*sqrt(3*x))/2)/3))/((4-27*x)*sqrt(x)*sqrt(4-27*x))). - Vladimir Kruchinin, Feb 12 2023
|
|
EXAMPLE
|
E.g. a(3)=660.
|
|
MAPLE
|
a:= n->sum(j*binomial(n+2, j)*binomial(2*(n+1), j)/6, j=0..n+2): seq(a(n), n=0..21); # Zerinvary Lajos, Jul 31 2006
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1,
3*(3*n+1)*(3*n+2)*a(n-1)/(2*n*(2*n+1)))
end:
|
|
MATHEMATICA
|
a[n_] := 1/Integrate[(x^(2/3) - x)^n, {x, 0, 1}]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Feb 18 2004 *)
|
|
PROG
|
(Sage) [binomial(3*n, n)*n/3 for n in range(1, 21)] # Zerinvary Lajos, May 17 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Al Hakanson (hawkuu(AT)excite.com), Feb 15 2004
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|