OFFSET
0,1
REFERENCES
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 60.
LINKS
Necdet Batir, On the series Sum_{k=1..oo} binomial(3k,k)^{-1} k^{-n} x^k, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 115, No. 4 (2005), pp. 371-381; arXiv preprint, arXiv:math/0512310 [math.AC], 2005.
Courtney Moen, Infinite series with binomial coefficients, Math. Mag. 64 (1) (1991) 53-55.
FORMULA
Equals Sum_{n>=1} 1/(n*A005809(n)).
Equals Integral_{x=0..1} x^2/(1-x^2+x^3) dx.
Equals Sum_(R) R*log(1-1/R)/(3*R-2) where R is summed over the set of the three constants -A075778, A210462-i*A210463 and A210462-i*A210463, i=sqrt(-1), that is, over the set of the three roots of x^3-x^2+1.
Equals (1/sqrt(23)) * (arctan(sqrt(3)/(2*phi-1)) * 18*phi/(phi^2-phi+1) - log((phi^3+1)/(phi+1)^3) * (3*sqrt(3)*phi*(1-phi))/(phi^3+1)), where phi = ((25+3*sqrt(69))/2)^(1/3) (Batir, 2005, p. 378, eq. (3.2)). - Amiram Eldar, Dec 07 2024
EXAMPLE
0.37121697526024703447477166607535880558762946905197...
MAPLE
A075778neg := proc()
1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
end proc:
A210462 := proc()
local a075778 ;
a075778 := A075778neg() ;
(1+1/a075778/(a075778-1))/2 ;
end proc:
A210463 := proc()
local a075778, a210462 ;
a075778 := A075778neg() ;
a210462 := A210462() ;
-1/a075778-a210462^2 ;
sqrt(%) ;
end proc:
A210453 := proc()
local v, x;
v := 0.0 ;
v := v+ x*log(1-1/x)/(3*x-2) ;
end do:
evalf(v) ;
end proc:
A210453() ;
MATHEMATICA
RealDigits[ HypergeometricPFQ[{1, 1, 3/2}, {4/3, 5/3}, 4/27]/3, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Jan 21 2013
STATUS
approved