login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210462
Decimal expansion of the real part of the complex roots of x^3-x^2+1.
5
8, 7, 7, 4, 3, 8, 8, 3, 3, 1, 2, 3, 3, 4, 6, 3, 8, 0, 0, 2, 4, 7, 5, 4, 4, 4, 8, 1, 7, 9, 2, 6, 4, 3, 4, 5, 9, 4, 7, 3, 0, 3, 3, 0, 8, 8, 8, 6, 3, 9, 6, 5, 7, 1, 9, 9, 4, 6, 4, 1, 9, 8, 5, 3, 2, 3, 0, 4, 0, 3, 2, 7, 5, 6, 4, 0, 4, 0, 5, 4, 5, 3, 6, 9, 1, 1, 3, 5, 4, 6, 4, 2, 1, 1, 2, 5, 1, 5, 1, 8, 2, 4, 1, 8, 8, 6, 8, 3, 9, 5, 6, 4, 0, 6, 7, 1, 1, 4, 6, 9, 1, 4, 8, 7, 9
OFFSET
0,1
COMMENTS
The real root is A075778 (negated). The imaginary parts are plus or minus A210463.
Real root of 8x^3 - 8x^2 + 2x - 1: an algebraic number of degree 3. - Charles R Greathouse IV, Apr 14 2014
The denominator of this algebraic number is 2, since its double is an algebraic integer. - Charles R Greathouse IV, Nov 12 2014
FORMULA
Equals 1/2 + 1/(2*A075778*(A075778+1)).
EXAMPLE
0.87743883312334638002475444817926...
MAPLE
A075778neg := proc()
1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
end proc:
A210462 := proc()
local a075778;
a075778 := A075778neg() ;
(1+1/a075778/(a075778-1))/2 ;
end proc:
evalf(A210462()) ;
MATHEMATICA
(2^(2/3)*(25 + 3*Sqrt[69])^(1/3) + 2^(2/3)*(25 - 3*Sqrt[69])^(1/3) + 4)/12 // RealDigits[#, 10, 125]& // First (* Jean-François Alcover, Feb 20 2013 *)
PROG
(PARI) real(polroots(x^3-x^2+1))[2] \\ Charles R Greathouse IV, Apr 14 2014
(PARI) polrootsreal(8*x^3-8*x^2+2*x-1)[1] \\ Charles R Greathouse IV, Apr 14 2014
CROSSREFS
Sequence in context: A154209 A115373 A021118 * A010529 A201505 A342316
KEYWORD
cons,nonn,easy
AUTHOR
R. J. Mathar, Jan 22 2013
STATUS
approved