Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Oct 01 2024 20:13:06
%S 8,7,7,4,3,8,8,3,3,1,2,3,3,4,6,3,8,0,0,2,4,7,5,4,4,4,8,1,7,9,2,6,4,3,
%T 4,5,9,4,7,3,0,3,3,0,8,8,8,6,3,9,6,5,7,1,9,9,4,6,4,1,9,8,5,3,2,3,0,4,
%U 0,3,2,7,5,6,4,0,4,0,5,4,5,3,6,9,1,1,3,5,4,6,4,2,1,1,2,5,1,5,1,8,2,4,1,8,8,6,8,3,9,5,6,4,0,6,7,1,1,4,6,9,1,4,8,7,9
%N Decimal expansion of the real part of the complex roots of x^3-x^2+1.
%C The real root is A075778 (negated). The imaginary parts are plus or minus A210463.
%C Real root of 8x^3 - 8x^2 + 2x - 1: an algebraic number of degree 3. - _Charles R Greathouse IV_, Apr 14 2014
%C The denominator of this algebraic number is 2, since its double is an algebraic integer. - _Charles R Greathouse IV_, Nov 12 2014
%H <a href="/index/Al#algebraic_03">Index entries for algebraic numbers, degree 3</a>
%F Equals 1/2 + 1/(2*A075778*(A075778+1)).
%e 0.87743883312334638002475444817926...
%p A075778neg := proc()
%p 1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
%p end proc:
%p A210462 := proc()
%p local a075778;
%p a075778 := A075778neg() ;
%p (1+1/a075778/(a075778-1))/2 ;
%p end proc:
%p evalf(A210462()) ;
%t (2^(2/3)*(25 + 3*Sqrt[69])^(1/3) + 2^(2/3)*(25 - 3*Sqrt[69])^(1/3) + 4)/12 // RealDigits[#, 10, 125]& // First (* _Jean-François Alcover_, Feb 20 2013 *)
%o (PARI) real(polroots(x^3-x^2+1))[2] \\ _Charles R Greathouse IV_, Apr 14 2014
%o (PARI) polrootsreal(8*x^3-8*x^2+2*x-1)[1] \\ _Charles R Greathouse IV_, Apr 14 2014
%Y Cf. A075778, A210463.
%K cons,nonn,easy
%O 0,1
%A _R. J. Mathar_, Jan 22 2013