login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210460
Expansion of x*(1+x)/(1-x-2*x^2-2*x^3-x^4).
1
1, 2, 4, 10, 23, 53, 123, 285, 660, 1529, 3542, 8205, 19007, 44030, 101996, 236275, 547334, 1267906, 2937120, 6803875, 15761261, 36511157, 84578549, 195927260, 453867933, 1051390708, 2435559643, 5642004185, 13069772820, 30276291184
OFFSET
1,2
COMMENTS
Transform of Fibonacci numbers based on the triangle A030528.
FORMULA
a(n) = sum(Fibonacci(k)*binomial(k,n-k), k=floor((n-1)/2)+1..n).
G.f.: x*(1+x)/(1-x-2*x^2-2*x^3-x^4).
a(n) = A123392(n-1)+A123392(n-2). [Bruno Berselli, Jan 23 2013]
MATHEMATICA
CoefficientList[Series[(1 + x)/(1 - x - 2 x^2 - 2 x^3 - x^4), {x, 0, 30}], x] (* Bruno Berselli, Jan 23 2013 *)
LinearRecurrence[{1, 2, 2, 1}, {1, 2, 4, 10}, 30] (* Harvey P. Dale, Mar 28 2015 *)
PROG
(Magma) [&+[Fibonacci(k)*Binomial(k, n-k): k in [Floor((n-1)/2)+1..n]]: n in [1..30]]; // Bruno Berselli, Jan 23 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Perminova Maria, Jan 22 2013
STATUS
approved