login
A238436
Expansion of 1/G(1) where G(k) = 1 - (q*(1+q))^k / G(k+1).
2
1, 1, 2, 4, 10, 23, 54, 131, 319, 773, 1876, 4570, 11153, 27230, 66494, 162420, 396856, 969918, 2370885, 5796072, 14170603, 34646935, 84714724, 207141788, 506510118, 1238559994, 3028671297, 7406137561, 18110681635, 44287420434, 108299872576, 264836004204, 647630466817, 1583719989406, 3872845689552
OFFSET
0,3
COMMENTS
What does this sequence count?
FORMULA
a(n) ~ c * d^n, where c = 0.2420970422648193730568648420401712... and d = 2.44542267258722345747732120775044... - Vaclav Kotesovec, Mar 01 2014
PROG
(PARI)
N = 66; q = 'q + O('q^N);
G(k) = if(k>N, 1, 1 - (q*(1+q))^k / G(k+1) );
Vec( 1/G(1) )
CROSSREFS
Cf. A238435: 1/G(1) where G(k) = 1 - (q/(1-q))^k / G(k+1).
Cf. A238437: 1/G(1) where G(k) = 1 - (q^k/(1-q^k)) / G(k+1).
Sequence in context: A210460 A329669 A191693 * A366229 A137681 A127389
KEYWORD
nonn
AUTHOR
Joerg Arndt, Feb 27 2014
STATUS
approved