login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210454
Cipolla pseudoprimes to base 2: (4^p-1)/3 for any prime p greater than 3.
6
341, 5461, 1398101, 22369621, 5726623061, 91625968981, 23456248059221, 96076792050570581, 1537228672809129301, 6296488643826193618261, 1611901092819505566274901, 25790417485112089060398421, 6602346876188694799461995861
OFFSET
1,1
COMMENTS
This is the case a=2 of Theorem 1 in the paper of Hamahata and Kokubun (see Links section).
Named after the Italian mathematician Michele Cipolla (1880-1947). - Amiram Eldar, Jun 15 2021
LINKS
Umberto Cerruti, Pseudoprimi di Fermat e numeri di Carmichael (in Italian), 2013. The sequence is on page 3.
Michele Cipolla, Sui numeri composti P, che verificano la congruenza di Fermat a^(P-1) = 1 (mod P), Annali di Matematica, Vol. 9 (1904), pp. 139-160.
Y. Hamahata and Y. Kokubun, Cipolla Pseudoprimes, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.6.
MAPLE
P:=proc(q)local n;
for n from 3 to q do print((4^ithprime(n)-1)/3);
od; end: P(100); # Paolo P. Lava, Oct 11 2013
MATHEMATICA
(4^# - 1)/3 & /@ Prime[Range[3, 15]]
PROG
(Magma) [(4^NthPrime(n)-1)/3: n in [3..15]];
(Maxima)
Prime(n) := block(if n = 1 then return(2), return(next_prime(Prime(n-1))))$
makelist((4^Prime(n)-1)/3, n, 3, 15);
(Haskell)
a210454 = (`div` 3) . (subtract 1) . (4 ^) . a000040 . (+ 2)
-- Reinhard Zumkeller, Jan 22 2013
(PARI) a(n)=4^prime(n+2)\3 \\ Charles R Greathouse IV, Jul 09 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Bruno Berselli, Jan 21 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)
STATUS
approved