

A210450


Numbers n such that 16n + 7 is in A192628.


0



0, 3, 4, 5, 6, 7, 11, 16, 17, 21, 23, 24, 27, 28, 32, 34, 35, 36, 38, 39, 40, 43, 44, 45, 47, 48, 49, 51, 53, 54, 55, 56, 59, 60, 63, 65, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81, 82, 85, 86, 89, 93, 96, 97, 98, 100, 102, 103, 105, 106, 107, 109, 110
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Reduce the elements of A192718 (which are the elements of A192628 congruent to 7 (mod 16)) by subtracting 7 and dividing by 16. In "On the reciprocal of the binary generating function for the sum of divisors", this sequence is precisely the set T.


REFERENCES

J. Cooper and A. Riasanovsky, On the reciprocal of the binary generating function for the sumofdivisors, Journal of Integer Sequences.
J. Cooper, D. Eichhorn, and K. O'Bryant, Reciprocals of binary power series, International Journal of Number Theory, 2 no. 4 (2006), 499522.


LINKS

Table of n, a(n) for n=1..63.
J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012


PROG

(Sage)
prec = 2^12
R = PowerSeriesRing(GF(2), 'q', default_prec = prec)
q = R.gen()
sigma = lambda x : 1 if x == 0 else sum(Integer(x).divisors())
SigmaSeries = sum([sigma(m)*q^m for m in range(prec)])
SigmaBarSeries = 1/SigmaSeries
SigmaBarList = SigmaBarSeries.exponents()
reduced = [(m7)/16 for m in SigmaBarList if mod(m, 8) == 7]
print reduced[:128]


CROSSREFS

Cf. A192718, A192628.
Sequence in context: A137922 A176984 A099562 * A133896 A052002 A247636
Adjacent sequences: A210447 A210448 A210449 * A210451 A210452 A210453


KEYWORD

nonn


AUTHOR

Alexander Riasanovsky, Jan 20 2013


STATUS

approved



