OFFSET
1,3
COMMENTS
Also, numbers having an odd number of partitions into distinct odd parts; that is, numbers m such that A000700(m) is odd. For example, 16 is in the list since 16 has 5 partitions into distinct odd parts, namely, 1 + 15, 3 + 13, 5 + 11, 7 + 9 and 1 + 3 + 5 + 7. See Formula section for a proof. - Peter Bala, Jan 22 2017
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..1000
O. Kolberg, Note on the parity of the partition function, Math. Scand. 7 1959 377-378. MR0117213 (22 #7995).
FORMULA
From Peter Bala, Jan 22 2016: (Start)
Sum_{n>=0} x^a(n) = (1 + x)*(1 + x^3)*(1 + x^5)*... taken modulo 2. Proof: Product_{n>=1} 1 + x^(2*n-1) = Product_{n>=1} (1 - x^(4*n-2))/(1 - x^(2*n-1)) = Product_{n>=1} (1 - x^(2*n))*(1 - x^(4*n-2))/( (1 - x^(2*n)) * (1 - x^(2*n-1)) ) = ( 1 + 2*Sum_{n>=1} (-1)^n*x^(2*n^2) )/(Product_{n>=1} (1 - x^n)) == 1/( Product_{n>=1} (1 - x^n) ) (mod 2). (End)
EXAMPLE
From Gus Wiseman, Jan 13 2020: (Start)
The partitions of the initial terms are:
(1) (3) (4) (5) (6) (7)
(21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (331)
(11111) (411) (421)
(2211) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
(End)
MAPLE
N:= 1000: # to get all terms <= N
V:= Vector(N+1):
V[1]:= 1:
for i from 1 to (N+1)/2 do
V[2*i..N+1]:= V[2*i..N+1] + V[1..N-2*i+2] mod 2
od:
select(t -> V[t+1]=1, [$1..N]); # Robert Israel, Jan 22 2017
MATHEMATICA
f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
Table[f[2, k], {k, 0, 1}] (* Clark Kimberling, Jan 05 2014 *)
PROG
(PARI) for(n=0, 200, if(numbpart(n)%2==1, print1(n", "))) \\ Altug Alkan, Nov 02 2015
(Haskell)
import Data.List (findIndices)
a052002 n = a052002_list !! (n-1)
a052002_list = findIndices odd a000041_list
-- Reinhard Zumkeller, Nov 03 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, Nov 15 1999
EXTENSIONS
Offset corrected and b-file adjusted by Reinhard Zumkeller, Nov 03 2015
STATUS
approved