login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361267
Numbers k such that prime(k+2) - prime(k) = 6.
1
3, 4, 5, 6, 7, 12, 13, 19, 25, 26, 27, 28, 43, 44, 48, 49, 59, 63, 64, 69, 88, 89, 112, 116, 142, 143, 147, 148, 151, 152, 181, 182, 206, 211, 212, 224, 225, 229, 234, 235, 236, 253, 261, 264, 276, 285, 286, 287, 301, 302, 313, 314, 322, 332, 336, 352, 384, 389
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Prime Triplet
Wikipedia, Prime triplet
FORMULA
a(n) = A000720(A007529(n)). - Alois P. Heinz, Mar 06 2023
MAPLE
q:= n-> is(ithprime(n+2)-ithprime(n)=6):
select(q, [$1..400])[]; # Alois P. Heinz, Mar 06 2023
MATHEMATICA
Select[Range[400], Prime[# + 2] - Prime[#] == 6 &] (* Michael De Vlieger, Mar 06 2023 *)
PrimePi/@(Select[Partition[Prime[Range[400]], 3, 1], #[[3]]-#[[1]]==6&][[;; , 1]]) (* Harvey P. Dale, Sep 16 2023 *)
PROG
(Clojure)
(defn next-prime [n]
(if (= n 2)
3
(let [m (+ n 2)
t (-> n Math/sqrt int (+ 2))]
(if (some #(zero? (mod m %)) (range 2 t))
(next-prime m)
m))))
(def primes (lazy-seq (iterate next-prime 2)))
(defn triplet-primes-positions [n]
(->> primes
(take n)
(partition 3 1)
(map list (range))
(filter (fn [[i xs]] (= 6 (- (last xs) (first xs)))))
(map #(-> % first inc))))
(println (triplet-primes-positions 2000))
(Python)
from itertools import count, islice
from sympy import nextprime, prime
def A361267_gen(startvalue=1): # generator of terms >= startvalue
p = prime(m:=max(startvalue, 1))
q = nextprime(p)
r = nextprime(q)
for k in count(m):
if r-p == 6:
yield k
p, q, r = q, r, nextprime(r)
A361267_list = list(islice(A361267_gen(), 20)) # Chai Wah Wu, Mar 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Atabey Kaygun, Mar 06 2023
STATUS
approved