OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + p^(s + 2)/(p^s - p)^2).
Dirichlet g.f.: zeta(s-2) * zeta(s-1)^2 * Product_{primes p} (1 - p^(4 - 3*s) + p^(2 - 2*s) + 2*p^(3 - 2*s) - p^(4 - 2*s) - 2*p^(1 - s)).
Sum_{k=1..n} a(k) ~ c * Pi^4 * n^3 / 108, where c = Product_{primes p} (1 - 3/p^2 + 2/p^3 + 1/p^4 - 1/p^5) = 0.3086489554825164955853322259998244718829914385...
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 - log(1-1/p))/p = 1.6843597117... . - Amiram Eldar, Sep 01 2023
MATHEMATICA
g[p_, e_] := e*p^(e+1); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1 + p^2 * X / (1 - p*X)^2)[n], ", "))
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Vaclav Kotesovec, Mar 06 2023
STATUS
approved