login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361266
Multiplicative with a(p^e) = p^(e + 3), e > 0.
2
1, 16, 81, 32, 625, 1296, 2401, 64, 243, 10000, 14641, 2592, 28561, 38416, 50625, 128, 83521, 3888, 130321, 20000, 194481, 234256, 279841, 5184, 3125, 456976, 729, 76832, 707281, 810000, 923521, 256, 1185921, 1336336, 1500625, 7776, 1874161, 2085136, 2313441, 40000
OFFSET
1,2
COMMENTS
In general, if the function is multiplicative with a(p^e) = p^(e + m) where m > 0, then Dirichlet g.f.: Product_{primes p} (1 + p^(m+1)/(p^s - p)).
Equivalently, Dirichlet g.f.: zeta(s-m-1) * zeta(s-1) * Product_{primes p} (1 + p^(2 + m - 2*s) - p^(2 + 2*m - 2*s) - p^(1 - s)).
Sum_{k=1..n} a(k) ~ c(m) * zeta(m+1) * n^(m+2) / (m+2), where c(m) = Product_{primes p} (1 - 1/p^2 - 1/p^(m+1) + 1/p^(m+2)).
Limit_{m->oo} c(m) = 6/Pi^2 = A059956.
LINKS
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + p^4/(p^s - p)).
Dirichlet g.f.: zeta(s-4) * zeta(s-1) * Product_{primes p} (1 + p^(5 - 2*s) - p^(8 - 2*s) - p^(1 - s)).
Sum_{k=1..n} a(k) ~ c * Pi^4 * n^5 / 450, where c = Product_{primes p} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.5761527353856670595206110782641172754062471168028961885...
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = n * A007947(n)^3 = A064549(n) * A007947(n)^2 = A361264(n) * A007947(n) = A064549(A064549(A064549(n))).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) = 1.148846213921... . (End)
MAPLE
f:= proc(n) local t;
mul(t[1]^(t[2]+3), t = ifactors(n)[2])
end proc:
map(f, [$1..50]); # Robert Israel, Mar 07 2023
MATHEMATICA
g[p_, e_] := p^(e+3); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1 + p^4*X/(1 - p*X))[n], ", "))
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 2] +=3); factorback(f); \\ Michel Marcus, Mar 07 2023
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Vaclav Kotesovec, Mar 06 2023
STATUS
approved