login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361269
Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.
3
1, 0, 2, 0, 4, 12, 0, 144, 168, 200, 0, 25696, 18768, 12384, 8688, 0, 18082560, 8697280, 3923040, 1914560, 936992, 0, 47025585664, 14670384000, 4512045120, 1622358720, 647087040, 242016192, 0, 450955726792704, 87781550054912, 17679638000640, 4496696041600, 1408276410240, 482302375296, 145763745920
OFFSET
0,3
LINKS
E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
FORMULA
E.g.f. for column 1: A(2*x) where A(x) is the e.g.f. for A003030.
E.g.f. for main diagonal: B(2*x) where B(x) is the e.g.f. for A003024.
EXAMPLE
1;
0, 2;
0, 4, 12;
0, 144, 168, 200;
0, 25696, 18768, 12384, 8688;
...
MATHEMATICA
nn =15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; begf = Total[CoefficientList[ Series[1/(Total[CoefficientList[Series[ Exp[-u *s[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}], z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]] /. z -> 2 z;
Range[0, nn]! CoefficientList[begf, {z, u}] // Grid (* Geoffrey Critzer, Mar 14 2023 after Andrew Howroyd *)
PROG
(PARI)
Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
U(e, p)={Z(p, k->e^(k*(k-1)/2))}
RelEgf(n, e)={sum(k=0, n, e^(k^2)*x^k/k!, O(x*x^n) )}
T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, RelEgf(n, e)))))))))]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2023
CROSSREFS
Cf. A003030, A003024, A002416 (row sums).
Sequence in context: A167341 A378853 A359188 * A343472 A214199 A320491
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Mar 06 2023
EXTENSIONS
Terms a(15) and beyond from Andrew Howroyd, Mar 06 2023
STATUS
approved