login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.
3

%I #28 Mar 16 2023 04:50:52

%S 1,0,2,0,4,12,0,144,168,200,0,25696,18768,12384,8688,0,18082560,

%T 8697280,3923040,1914560,936992,0,47025585664,14670384000,4512045120,

%U 1622358720,647087040,242016192,0,450955726792704,87781550054912,17679638000640,4496696041600,1408276410240,482302375296,145763745920

%N Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.

%H E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.

%H R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Strongly_connected_component">Strongly connected component</a>

%F E.g.f. for column 1: A(2*x) where A(x) is the e.g.f. for A003030.

%F E.g.f. for main diagonal: B(2*x) where B(x) is the e.g.f. for A003024.

%e 1;

%e 0, 2;

%e 0, 4, 12;

%e 0, 144, 168, 200;

%e 0, 25696, 18768, 12384, 8688;

%e ...

%t nn =15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],

%t Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; begf = Total[CoefficientList[ Series[1/(Total[CoefficientList[Series[ Exp[-u *s[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}],z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]] /. z -> 2 z;

%t Range[0, nn]! CoefficientList[begf, {z, u}] // Grid (* _Geoffrey Critzer_, Mar 14 2023 after Andrew Howroyd *)

%o (PARI)

%o Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}

%o G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}

%o U(e, p)={Z(p, k->e^(k*(k-1)/2))}

%o RelEgf(n, e)={sum(k=0, n, e^(k^2)*x^k/k!, O(x*x^n) )}

%o T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, RelEgf(n, e)))))))))]}

%o { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Mar 06 2023

%Y Cf. A003030, A003024, A002416 (row sums).

%K nonn,tabl

%O 0,3

%A _Geoffrey Critzer_, Mar 06 2023

%E Terms a(15) and beyond from _Andrew Howroyd_, Mar 06 2023