OFFSET
0,4
COMMENTS
A permutation is said to be Grassmannian if it has at most one descent. A permutation is odd if it has an odd number of inversions.
a(n) is also the number of 3124-avoiding odd Grassmannian permutations of size n.
LINKS
Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
FORMULA
G.f.: x^2*(x^4+x^2+x+1)/((1+x)^3*(1-x)^4).
EXAMPLE
For n=4 the a(4)=6 permutations are 1243, 1324, 2134, 2341, 2413, 4123.
PROG
(PARI) seq(n) = Vec(x^2*(x^4+x^2+x+1)/((1+x)^3*(1-x)^4) + O(x*x^n), -n-1) \\ Andrew Howroyd, Mar 07 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Juan B. Gil, Mar 07 2023
STATUS
approved