OFFSET
0,5
COMMENTS
a(n) = sum of 2nd largest part in all partitions of n (if all parts are equal, then we assume that 0 is also a part). Example: a(5) = 6 because the sum of the 2nd largest parts in the partitions [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1] is 0 + 1 + 2 + 1 + 1 + 1 + 0 = 6. - Emeric Deutsch, Dec 11 2015
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: g(x) = Sum(Sum(x^{q+i}/(1-x^q), q=i+1..infinity)/Product(1-x^q, q=i..infinity), i=1..infinity). - Emeric Deutsch, Nov 14 2015
a(n) = Sum(k*A264402(n,k), k>=1). - Emeric Deutsch, Dec 11 2015
EXAMPLE
a(5) = 6 because the partitions of 5 are [5], [(4),1], [(3),2], [(3),1,1], [(2),(2),1], [(2),1,1,1] and [1,1,1,1,1], containing a total of 6 parts that are not the smallest part (shown between parentheses).
MAPLE
g := sum((sum(x^(q+i)/(1-x^q), q = i+1 .. 80))/(product(1-x^q, q = i .. 80)), i = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 47); # Emeric Deutsch, Nov 14 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jul 15 2011
STATUS
approved