login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182984
Total number of parts that are not the smallest part in all partitions of n.
6
0, 0, 0, 1, 2, 6, 9, 19, 29, 48, 73, 114, 161, 241, 340, 479, 662, 917, 1237, 1678, 2231, 2965, 3901, 5114, 6629, 8588, 11036, 14129, 17983, 22823, 28790, 36238, 45381, 56674, 70502, 87453, 108077, 133259, 163762, 200747, 245378, 299261
OFFSET
0,5
COMMENTS
a(n) = sum of 2nd largest part in all partitions of n (if all parts are equal, then we assume that 0 is also a part). Example: a(5) = 6 because the sum of the 2nd largest parts in the partitions [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1] is 0 + 1 + 2 + 1 + 1 + 1 + 0 = 6. - Emeric Deutsch, Dec 11 2015
LINKS
FORMULA
a(n) = A006128(n) - A092269(n), for n >= 1.
G.f.: g(x) = Sum(Sum(x^{q+i}/(1-x^q), q=i+1..infinity)/Product(1-x^q, q=i..infinity), i=1..infinity). - Emeric Deutsch, Nov 14 2015
a(n) = Sum(k*A264402(n,k), k>=1). - Emeric Deutsch, Dec 11 2015
EXAMPLE
a(5) = 6 because the partitions of 5 are [5], [(4),1], [(3),2], [(3),1,1], [(2),(2),1], [(2),1,1,1] and [1,1,1,1,1], containing a total of 6 parts that are not the smallest part (shown between parentheses).
MAPLE
g := sum((sum(x^(q+i)/(1-x^q), q = i+1 .. 80))/(product(1-x^q, q = i .. 80)), i = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 47); # Emeric Deutsch, Nov 14 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jul 15 2011
STATUS
approved