login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361268
Multiplicative with a(p^e) = e * p^(e + 2), e > 0.
2
1, 8, 27, 32, 125, 216, 343, 96, 162, 1000, 1331, 864, 2197, 2744, 3375, 256, 4913, 1296, 6859, 4000, 9261, 10648, 12167, 2592, 1250, 17576, 729, 10976, 24389, 27000, 29791, 640, 35937, 39304, 42875, 5184, 50653, 54872, 59319, 12000, 68921, 74088, 79507, 42592
OFFSET
1,2
COMMENTS
In general, if the function is multiplicative with a(p^e) = e*p^(e+m) where m > 0, then Dirichlet g.f.: Product_{primes p} (1 + p^(s + m + 1)/(p^s - p)^2).
Equivalently, Dirichlet g.f.: zeta(s-m-1) * zeta(s-1)^2 * Product_{primes p} (1 - p^(3+m-3*s) + p^(2-2*s) + 2*p^(2+m-2*s) - p^(2+2*m-2*s) - 2*p^(1-s)).
Sum_{k=1..n} a(k) ~ c(m) * zeta(m+1)^2 * n^(m+2) / (m+2), where c(m) = Product_{primes p} (1 - 1/p^2 - 1/p^(2*m+3) + 1/p^(2*m+2) + 2/p^(m+2) - 2/p^(m+1)).
Limit_{m->oo} c(m) = 6/Pi^2 = A059956.
LINKS
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + p^(s + 3)/(p^s - p)^2).
Dirichlet g.f.: zeta(s-3) * zeta(s-1)^2 * Product_{primes p} (1 - p^(5 - 3*s) + p^(2 - 2*s) + 2*p^(4 - 2*s) - p^(6 - 2*s) - 2*p^(1 - s)).
Sum_{k=1..n} a(k) ~ c * zeta(3)^2 * n^4 / 4, where c = Product_{primes p} (1 - 1/p^2 - 2/p^3 + 2/p^4 + 1/p^6 - 1/p^7) = 0.47448576370894461600229128319633117903859559137234612880645471185501089953...
a(n) = A005361(n) * A361264(n).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 - log(1-1/p))/p^2 = 1.24331517732028787738... . - Amiram Eldar, Sep 01 2023
MATHEMATICA
g[p_, e_] := e*p^(e+2); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1 + p^3 * X / (1 - p*X)^2)[n], ", "))
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Vaclav Kotesovec, Mar 06 2023
STATUS
approved