Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 01 2023 02:55:22
%S 1,8,27,32,125,216,343,96,162,1000,1331,864,2197,2744,3375,256,4913,
%T 1296,6859,4000,9261,10648,12167,2592,1250,17576,729,10976,24389,
%U 27000,29791,640,35937,39304,42875,5184,50653,54872,59319,12000,68921,74088,79507,42592
%N Multiplicative with a(p^e) = e * p^(e + 2), e > 0.
%C In general, if the function is multiplicative with a(p^e) = e*p^(e+m) where m > 0, then Dirichlet g.f.: Product_{primes p} (1 + p^(s + m + 1)/(p^s - p)^2).
%C Equivalently, Dirichlet g.f.: zeta(s-m-1) * zeta(s-1)^2 * Product_{primes p} (1 - p^(3+m-3*s) + p^(2-2*s) + 2*p^(2+m-2*s) - p^(2+2*m-2*s) - 2*p^(1-s)).
%C Sum_{k=1..n} a(k) ~ c(m) * zeta(m+1)^2 * n^(m+2) / (m+2), where c(m) = Product_{primes p} (1 - 1/p^2 - 1/p^(2*m+3) + 1/p^(2*m+2) + 2/p^(m+2) - 2/p^(m+1)).
%C Limit_{m->oo} c(m) = 6/Pi^2 = A059956.
%H Amiram Eldar, <a href="/A361268/b361268.txt">Table of n, a(n) for n = 1..10000</a>
%F Dirichlet g.f.: Product_{primes p} (1 + p^(s + 3)/(p^s - p)^2).
%F Dirichlet g.f.: zeta(s-3) * zeta(s-1)^2 * Product_{primes p} (1 - p^(5 - 3*s) + p^(2 - 2*s) + 2*p^(4 - 2*s) - p^(6 - 2*s) - 2*p^(1 - s)).
%F Sum_{k=1..n} a(k) ~ c * zeta(3)^2 * n^4 / 4, where c = Product_{primes p} (1 - 1/p^2 - 2/p^3 + 2/p^4 + 1/p^6 - 1/p^7) = 0.47448576370894461600229128319633117903859559137234612880645471185501089953...
%F a(n) = A005361(n) * A361264(n).
%F Sum_{n>=1} 1/a(n) = Product_{p prime} (1 - log(1-1/p))/p^2 = 1.24331517732028787738... . - _Amiram Eldar_, Sep 01 2023
%t g[p_, e_] := e*p^(e+2); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
%o (PARI) for(n=1, 100, print1(direuler(p=2, n, 1 + p^3 * X / (1 - p*X)^2)[n], ", "))
%Y Cf. A005361, A059956, A203639, A361264, A361265.
%K nonn,easy,mult
%O 1,2
%A _Vaclav Kotesovec_, Mar 06 2023