login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214199
Number of rooted planar binary unlabeled trees with n leaves and caterpillar index = 3.
8
0, 0, 0, 2, 0, 4, 12, 36, 120, 392, 1288, 4284, 14304, 48024, 162024, 548872, 1866416, 6368464, 21797776, 74822636, 257513344, 888439192, 3072153864, 10645835384, 36964041872, 128584760560, 448087042160, 1564065659608, 5467992829120, 19144550862960, 67123334707984, 235658063191312, 828405764175712, 2915610778184352, 10273466501139232, 36239527330228044
OFFSET
0,4
LINKS
Filippo Disanto, The size of the biggest Caterpillar subtree in binary rooted planar trees, arXiv preprint arXiv:1202.5668 [math.CO], 2012.
MAPLE
C:=(1-sqrt(1-4*x))/2; # A000108 with a different offset
# F-(k): gives A025266, A025271, A214200, A214203
Fm:=k->(1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1)));
Sm:=k->seriestolist(series(Fm(k), x, 50));
# F+(k): gives A000108, A214198, A214201, A214204
Fp:=k->C-Fm(k-1);
Sp:=k->seriestolist(series(Fp(k), x, 50));
# F(k): gives A025266, A214199, A214202, A214205
F:=k->Fm(k)-Fm(k-1);
S:=k->seriestolist(series(F(k), x, 50));
MATHEMATICA
(1/2)*(Sqrt[1-4*x+8*x^3]-Sqrt[1-4*x+16*x^4])+O[x]^36 // CoefficientList[#, x]& (* Jean-François Alcover, Nov 07 2016, after Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 07 2012
STATUS
approved