login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted planar binary unlabeled trees with n leaves and caterpillar index = 3.
8

%I #16 Jun 18 2017 13:53:46

%S 0,0,0,2,0,4,12,36,120,392,1288,4284,14304,48024,162024,548872,

%T 1866416,6368464,21797776,74822636,257513344,888439192,3072153864,

%U 10645835384,36964041872,128584760560,448087042160,1564065659608,5467992829120,19144550862960,67123334707984,235658063191312,828405764175712,2915610778184352,10273466501139232,36239527330228044

%N Number of rooted planar binary unlabeled trees with n leaves and caterpillar index = 3.

%H Filippo Disanto, <a href="http://arxiv.org/abs/1202.5668">The size of the biggest Caterpillar subtree in binary rooted planar trees</a>, arXiv preprint arXiv:1202.5668 [math.CO], 2012.

%p C:=(1-sqrt(1-4*x))/2; # A000108 with a different offset

%p # F-(k): gives A025266, A025271, A214200, A214203

%p Fm:=k->(1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1)));

%p Sm:=k->seriestolist(series(Fm(k),x,50));

%p # F+(k): gives A000108, A214198, A214201, A214204

%p Fp:=k->C-Fm(k-1);

%p Sp:=k->seriestolist(series(Fp(k),x,50));

%p # F(k): gives A025266, A214199, A214202, A214205

%p F:=k->Fm(k)-Fm(k-1);

%p S:=k->seriestolist(series(F(k),x,50));

%t (1/2)*(Sqrt[1-4*x+8*x^3]-Sqrt[1-4*x+16*x^4])+O[x]^36 // CoefficientList[#,x]& (* _Jean-François Alcover_, Nov 07 2016, after Maple *)

%Y Cf. A025266, A000108, A025271, A214198-A214205.

%K nonn

%O 0,4

%A _N. J. A. Sloane_, Jul 07 2012