login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317364
Expansion of e.g.f. exp(2*x/(1 + x)).
2
1, 2, 0, -4, 16, -48, 64, 800, -12288, 127232, -1150976, 9266688, -58726400, 68777984, 7510646784, -207794409472, 4241007640576, -77359570944000, 1321952191971328, -21274345818161152, 313768799799607296, -3838962981483839488, 21775623343518515200, 859024717017756205056
OFFSET
0,2
COMMENTS
Inverse Lah transform of the powers of 2 (A000079).
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: Product_{k>=1} exp(-2*(-x)^k).
a(n) = 2*(-1)^(n+1) * n! * Hypergeometric1F1([1-n], [2], 2).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*2^k*n!/k!.
(n^2 + n)*a(n) + 2*n*a(n+1) + a(n+2) = 0. - Robert Israel, Aug 18 2019
From G. C. Greubel, Feb 23 2021: (Start)
a(n) = (-1)^n * n! * Laguerre(n, -1, 2) for n > 0 with a(0) = 1.
a(n) = Sum_{k=0..n} (-1)^(n-k) * A086915(n, k).
a(n) = (-1)^n * Sum_{k=0..n} 2^k * A008297(n, k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * (n-k+1)! * A001263(n, k). (End)
MAPLE
a:= proc(n) option remember; add((-1)^(n-k)*
n!/k!*binomial(n-1, k-1)*2^k, k=0..n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2018
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[2 x/(1 + x)], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Product[Exp[-2 (-x)^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n-k) Binomial[n-1, k-1] 2^k n!/k!, {k, 0, n}], {n, 0, 23}]
Join[{1}, Table[2 (-1)^(n+1) n! Hypergeometric1F1[1-n, 2, 2], {n, 23}]]
PROG
(Sage) [1 if n==0 else (-1)^n*factorial(n)*gen_laguerre(n, -1, 2) for n in (0..25)] # G. C. Greubel, Feb 23 2021
(Magma) [n eq 0 select 1 else (-1)^n*Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), 2): n in [0..25]]; // G. C. Greubel, Feb 23 2021
(PARI) a(n) = if (n==0, 1, (-1)^n*n!*pollaguerre(n, -1, 2)); \\ Michel Marcus, Feb 23 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jul 26 2018
STATUS
approved