The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317362 Expansion of e.g.f. exp(exp(x/(1 + x)) - 1). 0
 1, 1, 0, -1, 3, -8, 23, -89, 556, -4773, 44425, -397670, 3060577, -12448655, -235761640, 9571505555, -241952653453, 5424619822460, -116900288145113, 2494797839905055, -53406941947725348, 1152770311462756071, -25109138533156554399, 550613923917090815374, -12088287036694435407999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Inverse Lah transform of the Bell numbers (A000110). LINKS N. J. A. Sloane, Transforms FORMULA a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*Bell(k)*n!/k!, where Bell() = A000110. MAPLE a:= proc(n) option remember; add((-1)^(n-k)*n!/k!*       binomial(n-1, k-1)*combinat[bell](k), k=0..n)     end: seq(a(n), n=0..30);  # Alois P. Heinz, Jul 26 2018 MATHEMATICA nmax = 24; CoefficientList[Series[Exp[Exp[x/(1 + x)] - 1], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] BellB[k] n!/k!, {k, 0, n}], {n, 0, 24}] CROSSREFS Cf. A000110, A084357. Sequence in context: A148780 A148781 A327151 * A309114 A065083 A280190 Adjacent sequences:  A317359 A317360 A317361 * A317363 A317364 A317365 KEYWORD sign AUTHOR Ilya Gutkovskiy, Jul 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 17:16 EDT 2022. Contains 354092 sequences. (Running on oeis4.)