login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379832
The second Jordan totient function applied to the exponentially odd numbers.
2
1, 3, 8, 24, 24, 48, 48, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 384, 504, 648, 840, 576, 960, 768, 960, 864, 1152, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 1944, 2880, 2304, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224
OFFSET
1,2
LINKS
FORMULA
a(n) = A007434(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 1/(p*(p+1)))^3) = A185197 / A065463^3 = 0.57968779180803379088... .
Sum_{n>=1} 1/a(n) = (Pi^6/540) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.67479534964539923068...
In general, Sum_{m exponentially odd} 1/J_k(m) = zeta(k) * zeta(2*k) * Product_{p prime} (1 - 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.
MATHEMATICA
f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; expoddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; j2 /@ Select[Range[100], expoddQ]
PROG
(PARI) j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^2 - 1) * f[i, 1]^(2*f[i, 2] - 2)); }
isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1; }
list(lim) = apply(j2, select(isexpodd, vector(lim, i, i)));
CROSSREFS
Cf. A007434, A065463, A185197, A268335, A374456 (analogous with with J_1 = phi), A379715, A379716, A379717, A379718, A379833.
Sequence in context: A317362 A309114 A065083 * A379715 A280190 A037450
KEYWORD
nonn,easy,new
AUTHOR
Amiram Eldar, Jan 03 2025
STATUS
approved