OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 1/(p*(p+1)))^3) = A185197 / A065463^3 = 0.57968779180803379088... .
Sum_{n>=1} 1/a(n) = (Pi^6/540) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.67479534964539923068...
In general, Sum_{m exponentially odd} 1/J_k(m) = zeta(k) * zeta(2*k) * Product_{p prime} (1 - 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.
MATHEMATICA
f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; expoddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; j2 /@ Select[Range[100], expoddQ]
PROG
(PARI) j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^2 - 1) * f[i, 1]^(2*f[i, 2] - 2)); }
isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1; }
list(lim) = apply(j2, select(isexpodd, vector(lim, i, i)));
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Amiram Eldar, Jan 03 2025
STATUS
approved