|
|
A268335
|
|
Exponentially odd numbers.
|
|
25
|
|
|
1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
|
|
LINKS
|
Peter J. C. Moses, Table of n, a(n) for n = 1..2000
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015.
Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175(2016), 385-395.
|
|
FORMULA
|
Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
|
|
MATHEMATICA
|
Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
|
|
PROG
|
(PARI) isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k, 2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
|
|
CROSSREFS
|
Cf. A002035, A209061, A138302, A197680, A000578, A000584, A001014, A001017, A008456, A010803, A010805, A010806, A010808, A010811, A010812, A001221, A124010.
Sequence in context: A028801 A239161 A162644 * A002035 A336591 A036537
Adjacent sequences: A268332 A268333 A268334 * A268336 A268337 A268338
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Shevelev, Feb 01 2016
|
|
STATUS
|
approved
|
|
|
|