|
|
A010811
|
|
23rd powers: a(n) = n^23.
|
|
6
|
|
|
0, 1, 8388608, 94143178827, 70368744177664, 11920928955078125, 789730223053602816, 27368747340080916343, 590295810358705651712, 8862938119652501095929, 100000000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (24, -276, 2024, -10626, 42504, -134596, 346104, -735471, 1307504, -1961256, 2496144, -2704156, 2496144, -1961256, 1307504, -735471, 346104, -134596, 42504, -10626, 2024, -276, 24, -1).
|
|
FORMULA
|
Completely multiplicative sequence with a(p) = p^23 for prime p. Multiplicative sequence with a(p^e) = p^(23e). - Jaroslav Krizek, Nov 01 2009
Dirichlet g.f.: zeta(s-23).
Sum_{n>=1} 1/a(n) = zeta(23).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4194303*zeta(23)/4194304. (End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,mult,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|