login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017709
Numerator of sum of -23rd powers of divisors of n.
3
1, 8388609, 94143178828, 70368752566273, 11920928955078126, 65810859767097521, 27368747340080916344, 590295880727458217985, 8862938119746644274757, 50000005960464481733367, 895430243255237372246532, 1656184514187480740117011, 41753905413413116367045798
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017710(n) = zeta(23).
Dirichlet g.f. of a(n)/A017710(n): zeta(s)*zeta(s+23).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017710(k) = zeta(24). (End)
MATHEMATICA
Table[Numerator[Total[Divisors[n]^-23]], {n, 12}] (* Harvey P. Dale, Oct 19 2012 *)
Table[Numerator[DivisorSigma[23, n]/n^23], {n, 1, 20}] (* G. C. Greubel, Nov 03 2018 *)
PROG
(PARI) a(n) = numerator(sigma(n, 23)/n^23); \\ G. C. Greubel, Nov 03 2018
(Magma) [Numerator(DivisorSigma(23, n)/n^23): n in [1..20]]; // G. C. Greubel, Nov 03 2018
CROSSREFS
Cf. A017710 (denominator).
Sequence in context: A017710 A010811 A323660 * A013971 A036101 A283031
KEYWORD
nonn,frac
STATUS
approved