login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283031
Number of inequivalent 5 X 5 matrices with entries in {1,2,3,...,n} up to rotations.
9
0, 1, 8390720, 211822552035, 281474993496064, 74505806274453125, 7107572010747738816, 335267154940213889575, 9444732965876730429440, 179474496923598616041129, 2500000000002500005000000, 27086764858479561198237131, 238490541610199280719585280
OFFSET
0,3
COMMENTS
Cycle index of cyclic group C4 acting on the set of 25 entries is (2*s(4)^6*s(1) + s(2)^12*s(1) + s(1)^25).
LINKS
FORMULA
a(n) = n^7*(n^2 + 1)*(n^4 - n^2 + 1)*(n^12 - n^6 + 2)/4.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 26*a(n-1) - 325*a(n-2) + 2600*a(n-3) - 14950*a(n-4) + 65780*a(n-5) - 230230*a(n-6) + 657800*a(n-7) - 1562275*a(n-8) + 3124550*a(n-9) - 5311735*a(n-10) + 7726160*a(n-11) - 9657700*a(n-12) + 10400600*a(n-13) - 9657700*a(n-14) + 7726160*a(n-15) - 5311735*a(n-16) + 3124550*a(n-17) - 1562275*a(n-18) + 657800*a(n-19) - 230230*a(n-20) + 65780*a(n-21) - 14950*a(n-22) + 2600*a(n-23) - 325*a(n-24) + 26*a(n-25) - a(n-26) for n > 25.
G.f.: x*(x^24 + 8390694*x^23 + 211604393640*x^22 + 275970334124554*x^21 + 67256276957109786*x^20 + 5261349807304085586*x^19 + 173956000912091771464*x^18 + 2848226864007694392990*x^17 + 25488973079546662159119*x^16 + 132928565342248912495516*x^15 + 421347175220529448574736*x^14 + 833653141283634765151044*x^13 + 1044911777486454930701740*x^12 + 833653141283634765151044*x^11 + 421347175220529448574736*x^10 + 132928565342248912495516*x^9 + 25488973079546662159119*x^8 + 2848226864007694392990*x^7 + 173956000912091771464*x^6 + 5261349807304085586*x^5 + 67256276957109786*x^4 + 275970334124554*x^3 + 211604393640*x^2 + 8390694*x + 1)/(x - 1)^26. (End)
a(n) = n^7*(n^18 + n^6 + 2)/4. - Chai Wah Wu, Jan 24 2023
EXAMPLE
For n=2 we get a(2)=8390720 inequivalent 5 X 5 binary matrices up to rotations.
MAPLE
[n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4$n=0..16]; # Muniru A Asiru, Dec 07 2018
MATHEMATICA
Table[n^7(n^2 + 1)(n^4 - n^2 + 1)(n^12 - n^6 + 2)/4, {n, 0, 16}]
PROG
(PARI) a(n) = n^7*(n^2 + 1)*(n^4 - n^2 + 1)*(n^12 - n^6 + 2)/4; \\ Indranil Ghosh, Feb 27 2017
(Python) def A283031(n): return n**7*(n**2 + 1)*(n**4 - n**2 + 1)*(n**12 - n**6 + 2)/4 # Indranil Ghosh, Feb 27 2017
(Python)
def A283031(n): return n**7*(n**6*(n**12+1)+2)>>2 # Chai Wah Wu, Jan 24 2023
(Magma) [n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
(Sage) [n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
(GAP) List([0..30], n -> n^7*(n^2+1)*(n^4-n^2+1)*(n^12-n^6+2)/4); # G. C. Greubel, Dec 07 2018
CROSSREFS
Row n=5 of A343095.
Cf. A283027 (4 X 4 version), A282613 (3 X 3 version), A006528 (2 X 2 version).
Sequence in context: A017709 A013971 A036101 * A160673 A283032 A049362
KEYWORD
nonn,easy
AUTHOR
David Nacin, Feb 27 2017
STATUS
approved