login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282614
Number of inequivalent 3 X 3 matrices with entries in {1,2,3,..,n} up to vertical and horizontal reflections.
11
0, 1, 168, 5346, 67840, 496875, 2544696, 10151428, 33693696, 97135605, 250525000, 590412966, 1291500288, 2653631071, 5169160920, 9616725000, 17188519936, 29659392873, 49607301096, 80696066410, 128032800000, 198613915731, 301875282808, 450363792396
OFFSET
0,3
COMMENTS
Cycle index of symmetry group is (2*s(2)^3*s(1)^3 + s(2)^4*s(1) + s(1)^9)/4.
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = n^5*(n+1)*(n^3-n^2+n+1)/4.
G.f.: x*(1 + 158*x + 3711*x^2 + 21820*x^3 + 39095*x^4 + 22254*x^5 + 3577*x^6 + 104*x^7) / (1 - x)^10. - Colin Barker, Feb 23 2017
EXAMPLE
The number of 3 X 3 binary matrices up to vertical and horizontal reflections is 168.
MATHEMATICA
Table[(2n+1+n^4)n^5/4, {n, 0, 24}]
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 168, 5346, 67840, 496875, 2544696, 10151428, 33693696, 97135605}, 30] (* Harvey P. Dale, Oct 01 2024 *)
PROG
(PARI) concat(0, Vec(x*(1 + 158*x + 3711*x^2 + 21820*x^3 + 39095*x^4 + 22254*x^5 + 3577*x^6 + 104*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Feb 23 2017
CROSSREFS
Cf. A282613, A282614, A217331, A168555. (For 2x2 version see A039623.)
Sequence in context: A331908 A231995 A223243 * A003807 A011785 A227433
KEYWORD
nonn,easy
AUTHOR
David Nacin, Feb 19 2017
STATUS
approved