login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282615 Number of self-conjugate separable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}). 10
0, 1, 1, 3, 4, 9, 20, 35, 102, 160, 736, 930, 5972, 6766, 59017, 61814, 671651 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (see A202705).

A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.

                   | separable | inseparable | either  |

-------------------+-----------+-------------+---------+

self-conjugate     | A282615   | A279197     | A282616 |

non-self-conjugate | A282618   | A282617     | A282619 |

either             | A279199   | A202705     | A104429 |

LINKS

Table of n, a(n) for n=1..17.

FORMULA

a(n) = A282616(n) - A279197(n).

a(n) = A279199(n) - A282618(n).

EXAMPLE

For n = 4 the a(4) = 3 solutions are:

(10,12,11),(7,9,8),(4,6,5),(1,3,2),

(10,12,11),(5,9,7),(4,8,6),(1,3,2), and

(8,12,10),(7,11,9),(2,6,4),(1,5,3).

CROSSREFS

Cf. A104429, A202705, A279197, A279199, A282616, A282617, A282618, A282619.

All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.

Sequence in context: A291532 A110810 A247579 * A049978 A324764 A092763

Adjacent sequences:  A282612 A282613 A282614 * A282616 A282617 A282618

KEYWORD

nonn,more

AUTHOR

Peter Kagey, Feb 19 2017

EXTENSIONS

a(11)-a(16) from Fausto A. C. Cariboni, Feb 27 2017

a(17) from Fausto A. C. Cariboni, Mar 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 06:55 EDT 2021. Contains 345358 sequences. (Running on oeis4.)