login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324764
Number of anti-transitive rooted identity trees with n nodes.
21
1, 1, 1, 1, 3, 4, 9, 20, 41, 89, 196, 443, 987, 2246, 5114, 11757, 27122, 62898, 146392, 342204, 802429, 1887882
OFFSET
1,5
COMMENTS
A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root. It is anti-transitive if the branches of the branches of the root are disjoint from the branches of the root.
Also the number of finitary sets S with n brackets where no element of an element of S is also an element of S. For example, the a(8) = 20 finitary sets are (o = {}):
{{{{{{{o}}}}}}}
{{{{{o,{o}}}}}}
{{{{o,{{o}}}}}}
{{{o,{{{o}}}}}}
{{{o,{o,{o}}}}}
{{{{o},{{o}}}}}
{{o,{{{{o}}}}}}
{{o,{{o,{o}}}}}
{{o,{o,{{o}}}}}
{{{o},{{{o}}}}}
{{{o},{o,{o}}}}
{{o,{o},{{o}}}}
{o,{{{{{o}}}}}}
{o,{{{o,{o}}}}}
{o,{{o,{{o}}}}}
{o,{{o},{{o}}}}
{{o},{{{{o}}}}}
{{o},{{o,{o}}}}
{{o},{o,{{o}}}}
{{{o}},{o,{o}}}
EXAMPLE
The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees:
o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o))))
(o((o))) ((o((o)))) (o((o(o))))
((((o)))) (o(((o)))) ((((o(o)))))
(((((o))))) (((o)((o))))
(((o((o)))))
((o)(((o))))
((o(((o)))))
(o((((o)))))
((((((o))))))
MATHEMATICA
idall[n_]:=If[n==1, {{}}, Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])], UnsameQ@@#&]];
Table[Length[Select[idall[n], Intersection[Union@@#, #]=={}&]], {n, 10}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Mar 17 2019
EXTENSIONS
a(21)-a(22) from Jinyuan Wang, Jun 20 2020
STATUS
approved