login
A324765
Number of recursively anti-transitive rooted trees with n nodes.
18
1, 1, 2, 3, 6, 11, 26, 52, 119, 266, 618, 1432, 3402, 8093, 19505, 47228, 115244, 282529, 696388, 1723400
OFFSET
1,3
COMMENTS
An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of a terminal subtree is a branch of the same subtree.
EXAMPLE
The a(1) = 1 through a(6) = 11 recursively anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
(o((o))) (o((oo)))
((((o)))) (oo((o)))
((((oo))))
(((o)(o)))
((o((o))))
(o(((o))))
(((((o)))))
MATHEMATICA
nallt[n_]:=Select[Union[Sort/@Join@@(Tuples[nallt/@#]&/@IntegerPartitions[n-1])], Intersection[Union@@#, #]=={}&];
Table[Length[nallt[n]], {n, 10}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Mar 17 2019
STATUS
approved