login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324766
Matula-Goebel numbers of recursively anti-transitive rooted trees.
9
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 32, 33, 34, 35, 40, 44, 46, 49, 50, 51, 53, 57, 59, 62, 63, 64, 67, 68, 71, 73, 77, 79, 80, 81, 83, 85, 87, 88, 92, 93, 95, 97, 99, 100, 103, 109, 115, 118, 121, 124, 125, 127, 128
OFFSET
1,2
COMMENTS
The complement is {6, 12, 13, 14, 15, 18, 24, 26, 28, 30, 36, ...}.
An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of a terminal subtree is a branch of the same subtree.
EXAMPLE
The sequence of recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
1: o
2: (o)
3: ((o))
4: (oo)
5: (((o)))
7: ((oo))
8: (ooo)
9: ((o)(o))
10: (o((o)))
11: ((((o))))
16: (oooo)
17: (((oo)))
19: ((ooo))
20: (oo((o)))
21: ((o)(oo))
22: (o(((o))))
23: (((o)(o)))
25: (((o))((o)))
27: ((o)(o)(o))
29: ((o((o))))
31: (((((o)))))
32: (ooooo)
33: ((o)(((o))))
34: (o((oo)))
35: (((o))(oo))
40: (ooo((o)))
44: (oo(((o))))
46: (o((o)(o)))
49: ((oo)(oo))
50: (o((o))((o)))
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
totantiQ[n_]:=And[Intersection[Union@@primeMS/@primeMS[n], primeMS[n]]=={}, And@@totantiQ/@primeMS[n]];
Select[Range[100], totantiQ]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2019
STATUS
approved