login
A208602
Number of n-bead necklaces labeled with numbers -1..1 not allowing reversal, with sum zero.
2
1, 2, 3, 6, 11, 26, 57, 142, 351, 902, 2333, 6166, 16381, 44046, 119183, 324862, 890291, 2453126, 6789309, 18869426, 52635789, 147325510, 413618615, 1164517198, 3287073461, 9300516890, 26372968983, 74937177538, 213333642443, 608400919106, 1737954608281
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A002426(d). - Andrew Howroyd, Mar 02 2017
EXAMPLE
All solutions for n=5:
.-1...-1...-1...-1...-1...-1...-1...-1....0...-1...-1
.-1....1....0...-1....0....0....0....0....0....1...-1
..1...-1....0....1....1...-1....1....0....0....0....0
..1....1....1....0...-1....1....0....0....0....0....1
..0....0....0....1....1....1....0....1....0....0....1
MATHEMATICA
comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; a[n_Integer, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2 k + 1, #] &]/n; a[n_] = a[n, 1]; Array[a, 31] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
CROSSREFS
Column 1 of A208597.
Sequence in context: A156807 A032256 A324765 * A051603 A094927 A024423
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 29 2012
STATUS
approved