login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208602
Number of n-bead necklaces labeled with numbers -1..1 not allowing reversal, with sum zero.
2
1, 2, 3, 6, 11, 26, 57, 142, 351, 902, 2333, 6166, 16381, 44046, 119183, 324862, 890291, 2453126, 6789309, 18869426, 52635789, 147325510, 413618615, 1164517198, 3287073461, 9300516890, 26372968983, 74937177538, 213333642443, 608400919106, 1737954608281
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A002426(d). - Andrew Howroyd, Mar 02 2017
EXAMPLE
All solutions for n=5:
.-1...-1...-1...-1...-1...-1...-1...-1....0...-1...-1
.-1....1....0...-1....0....0....0....0....0....1...-1
..1...-1....0....1....1...-1....1....0....0....0....0
..1....1....1....0...-1....1....0....0....0....0....1
..0....0....0....1....1....1....0....1....0....0....1
MATHEMATICA
comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; a[n_Integer, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2 k + 1, #] &]/n; a[n_] = a[n, 1]; Array[a, 31] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
CROSSREFS
Column 1 of A208597.
Sequence in context: A156807 A032256 A324765 * A051603 A094927 A024423
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 29 2012
STATUS
approved