login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208603
McKay-Thompson series of class 16B for the Monster group with a(0) = 2.
3
1, 2, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, -4, 0, 0, 0, 5, 0, 0, 0, 8, 0, 0, 0, -8, 0, 0, 0, -10, 0, 0, 0, 11, 0, 0, 0, 12, 0, 0, 0, -15, 0, 0, 0, -18, 0, 0, 0, 22, 0, 0, 0, 26, 0, 0, 0, -29, 0, 0, 0, -34, 0, 0, 0
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * phi(q) / psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^5 * eta(q^8) / (eta(q)^2 * eta(q^4)^2 * eta(q^16)^2) in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, -1, 2, -3, 2, -2, 2, -3, 2, -1, 2, -3, 2, 0, ...].
G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) where f(u, v) = v^2 - (v - 2) * (u^2 - 4*u + 8).
G.f.: 2 + (1/q) * Product_{k>0} ((1 + q^(8*k - 4)) / (1 + q^(8*k)))^2.
a(4*n - 1) = A029839(n). a(4*n) = 0 unless n=0. a(4*n + 1) = a(4*n + 2) = 0. Convolution inverse of A208605.
a(n) = -(-1)^n * A185338(n).
EXAMPLE
G.f. = 1/q + 2 + 2*q^3 - q^7 - 2*q^11 + 3*q^15 + 2*q^19 - 4*q^23 - 4*q^27 + 5*q^31 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q^2]^5*(QP[q^8]/(QP[q]^2*QP[q^4]^2*QP[q^16]^2)) + O[q]^80; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^16 + A)^2), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 29 2012
STATUS
approved