login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 16B for the Monster group with a(0) = 2.
3

%I #17 Mar 12 2021 22:24:46

%S 1,2,0,0,2,0,0,0,-1,0,0,0,-2,0,0,0,3,0,0,0,2,0,0,0,-4,0,0,0,-4,0,0,0,

%T 5,0,0,0,8,0,0,0,-8,0,0,0,-10,0,0,0,11,0,0,0,12,0,0,0,-15,0,0,0,-18,0,

%U 0,0,22,0,0,0,26,0,0,0,-29,0,0,0,-34,0,0,0

%N McKay-Thompson series of class 16B for the Monster group with a(0) = 2.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A208603/b208603.txt">Table of n, a(n) for n = -1..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-1) * phi(q) / psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.

%F Expansion of eta(q^2)^5 * eta(q^8) / (eta(q)^2 * eta(q^4)^2 * eta(q^16)^2) in powers of q.

%F Euler transform of period 16 sequence [ 2, -3, 2, -1, 2, -3, 2, -2, 2, -3, 2, -1, 2, -3, 2, 0, ...].

%F G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) where f(u, v) = v^2 - (v - 2) * (u^2 - 4*u + 8).

%F G.f.: 2 + (1/q) * Product_{k>0} ((1 + q^(8*k - 4)) / (1 + q^(8*k)))^2.

%F a(4*n - 1) = A029839(n). a(4*n) = 0 unless n=0. a(4*n + 1) = a(4*n + 2) = 0. Convolution inverse of A208605.

%F a(n) = -(-1)^n * A185338(n).

%e G.f. = 1/q + 2 + 2*q^3 - q^7 - 2*q^11 + 3*q^15 + 2*q^19 - 4*q^23 - 4*q^27 + 5*q^31 + ...

%t QP = QPochhammer; s = QP[q^2]^5*(QP[q^8]/(QP[q]^2*QP[q^4]^2*QP[q^16]^2)) + O[q]^80; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 15 2015, adapted from PARI *)

%o (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^16 + A)^2), n))}

%Y Cf. A029839, A185338, A208605.

%K sign

%O -1,2

%A _Michael Somos_, Feb 29 2012