login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112301
Expansion of (eta(q) * eta(q^16))^2 / (eta(q^2) * eta(q^8)) in powers of q.
4
1, -2, 0, 0, 2, 0, 0, 0, 1, -4, 0, 0, 2, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 3, -4, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, -6, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, -4, 0, 0, 0, 0, 0, 0, 1, -4, 0, 0, 4, 0, 0, 0, 2, -4, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 2, 0, 0, 0, 0
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * phi(-q) * psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of (phi(-q^2)^2 - phi(-q)^2) / 4 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 16 sequence [ -2, -1, -2, -1, -2, -1, -2, 0, -2, -1, -2, -1, -2, -1, -2, -2, ...].
a(n) is ultiplicative with a(2) = -2, a(2^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4).
Moebius transform is period 16 sequence [ 1, -3, -1, 2, 1, 3, -1, 0, 1, -3, -1, -2, 1, 3, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 4 (t/i) f(t) where q = exp(2 Pi i t).
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 + x^(8*k))^2 * (1 + x^(2*k)) * (1 + x^(4*k)).
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 - x^k)^2 / (1 - x^(4*k)).
a(4*n) = a(4*n + 3) = a(8*n + 6) = 0. a(8*n + 2) = -2 * A008441(n).
a(n) = -(-1)^n * A134013(n). a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n).
EXAMPLE
G.f. = q - 2*q^2 + 2*q^5 + q^9 - 4*q^10 + 2*q^13 + 2*q^17 - 2*q^18 + 3*q^25 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 2, 0, q^4] / 2, {q, 0, n}]; (* Michael Somos, Oct 19 2013 *)
QP = QPochhammer; s = (QP[q]*QP[q^16])^2/(QP[q^2]*QP[q^8]) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^16 + A))^2 / (eta(x^2 + A) * eta(x^8 + A)), n))};
(PARI) {a(n) = if( n>0 & (n+1)%4\2, (n%2*3 - 2) * sumdiv( n / gcd(n, 2), d, (-1)^(d\2)))};
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Sep 02 2005, Oct 02 2007
STATUS
approved