OFFSET
1,2
COMMENTS
From Johannes W. Meijer, Jun 27 2016: (Start)
With Phi(z, p, q) the Lerch transcendent, define LP(n) = (1/n) * sum(Phi(1/2, n-k, 1) * LP(k), k=0..n-1), with LP(0) = 1. Conjecture: Lim_{n -> infinity} LP(n) = A112302.
The structure of the n! * LP(n) formulas leads to the multinomial coefficients A036039. (End)
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., AMS Chelsea 2000. See Appendix I. p. 348.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..1011
Steven Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, Section 6.10.
Hibiki Gima, Toshiki Matsusaka, Taichi Miyazaki, and Shunta Yara, On integrality and asymptotic behavior of the (k,l)-Göbel sequences, arXiv:2402.09064 [math.NT], 2024. See p. 2.
Olivier Golinelli, Remote control system of a binary tree of switches - II. balancing for a perfect binary tree, arXiv:2405.16968 [cs.DM], 2024. See p. 17.
M. D. Hirschhorn, A note on Somos' quadratic recurrence constant, J. Number Theory 131 (2011), 2061-2063.
Dawei Lu and Zexi Song, Some new continued fraction estimates of the Somos' quadratic recurrence constant, Journal of Number Theory, 155 (2015), 36-45.
Dawei Lu, Xiaoguang Wang, and Ruiqing Xu, Some New Exponential-Function Estimates of the Somos' Quadratic Recurrence Constant, Results in Mathematics 74(1) (2019), Article 6.
Cristinel Mortici, Estimating the Somos' quadratic recurrence constant, J. Number Theory 130 (2010), 2650-1657.
Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, arXiv:math/0506319 [math.NT], 2005-2006; see page 8.
Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008), 247-270.
Jörg Neunhäuserer, On the universality of Somos' constant, arXiv:2006.02882 [math.DS], 2020.
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006.
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007), 292-314.
Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant.
Xu You and Di-Rong Chen, Improved continued fraction sequence convergent to the Somos' quadratic recurrence constant, Mathematical Analysis and Applications, 436(1) (2016), 513-520.
FORMULA
Equals Product_{n>=1} n^(1/2^n). - Jonathan Sondow, Apr 07 2013
EXAMPLE
1.6616879496335941212958189227499507499644186350250682081897111680...
MATHEMATICA
RealDigits[ Fold[ N[ Sqrt[ #2*#1], 128] &, Sqrt@ 351, Reverse@ Range@ 350], 10, 111][[1]] (* Robert G. Wilson v, Nov 05 2010 *)
Exp[-Derivative[1, 0][PolyLog][0, 1/2]] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Apr 07 2014, after Jonathan Sondow *)
PROG
(PARI) {a(n) = if( n<-1, 0, n++; default( realprecision, n+2); floor( prodinf( k=1, k^2^-k)* 10^n) % 10)};
(PARI) prodinf(n=1, n^2^-n) \\ Charles R Greathouse IV, Apr 07 2013
(Python)
from mpmath import polylog, diff, exp, mp
mp.dps = 120
somos_const = exp(-diff(lambda n: polylog(n, 1/2), 0))
A112302 = [int(d) for d in mp.nstr(somos_const, n=mp.dps)[:-1] if d != '.'] # Jwalin Bhatt, Nov 23 2024
CROSSREFS
KEYWORD
AUTHOR
Michael Somos, Sep 02 2005
STATUS
approved