The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112302 Decimal expansion of quadratic recurrence constant sqrt(1 * sqrt(2 * sqrt(3 * sqrt(4 * ...)))). 18
 1, 6, 6, 1, 6, 8, 7, 9, 4, 9, 6, 3, 3, 5, 9, 4, 1, 2, 1, 2, 9, 5, 8, 1, 8, 9, 2, 2, 7, 4, 9, 9, 5, 0, 7, 4, 9, 9, 6, 4, 4, 1, 8, 6, 3, 5, 0, 2, 5, 0, 6, 8, 2, 0, 8, 1, 8, 9, 7, 1, 1, 1, 6, 8, 0, 2, 5, 6, 0, 9, 0, 2, 9, 8, 2, 6, 3, 8, 3, 7, 2, 7, 9, 0, 8, 3, 6, 9, 1, 7, 6, 4, 1, 1, 4, 6, 1, 1, 6, 7, 1, 5, 5, 2, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From Johannes W. Meijer, Jun 27 2016: (Start) With Phi(z, p, q) the Lerch transcendent, define LP(n) = (1/n) * sum(Phi(1/2, n-k, 1) * LP(k), k=0..n-1), with LP(0) = 1. Conjecture: Lim_{n -> infinity} LP(n) = A112302. For similar formulas, see A163930 and A135002. For background information, see A274181. The structure of the n! * LP(n) formulas leads to the multinomial coefficients A036039. (End) REFERENCES S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446. S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., AMS Chelsea 2000. See Appendix I. p. 348. LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..1011 Steven Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, Section 6.10. M. D. Hirschhorn, A note on Somos' quadratic recurrence constant, J. Number Theory 131 (2011), 2061-2063. Dawei Lu and Zexi Song, Some new continued fraction estimates of the Somos' quadratic recurrence constant, Journal of Number Theory, 155 (2015), 36-45. Dawei Lu, Xiaoguang Wang, and Ruiqing Xu, Some New Exponential-Function Estimates of the Somos' Quadratic Recurrence Constant, Results in Mathematics 74(1) (2019), Article 6. Cristinel Mortici, Estimating the Somos' quadratic recurrence constant, J. Number Theory 130 (2010), 2650-1657. Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, arXiv:math/0506319 [math.NT], 2005-2006; see page 8. Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008), 247-270. Jörg Neunhäuserer, On the universality of Somos' constant, arXiv:2006.02882 [math.DS], 2020. Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006. Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007), 292-314. Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant. Xu You and Di-Rong Chen, Improved continued fraction sequence convergent to the Somos' quadratic recurrence constant, Mathematical Analysis and Applications, 436(1) (2016), 513-520. FORMULA Equals Product_{n>=1} n^(1/2^n). - Jonathan Sondow, Apr 07 2013 EXAMPLE 1.6616879496335941212958189227499507499644186350250682081897111680... MATHEMATICA RealDigits[ Fold[ N[ Sqrt[ #2*#1], 128] &, Sqrt@ 351, Reverse@ Range@ 350], 10, 111][[1]] (* Robert G. Wilson v, Nov 05 2010 *) Exp[-Derivative[1, 0][PolyLog][0, 1/2]] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Apr 07 2014, after Jonathan Sondow *) PROG (PARI) {a(n) = if( n<-1, 0, n++; default( realprecision, n+2); floor( prodinf( k=1, k^2^-k)* 10^n) % 10)}; (PARI) prodinf(n=1, n^2^-n) \\ Charles R Greathouse IV, Apr 07 2013 CROSSREFS Cf. A052129, A055209, A116603, A123851, A123852, A123853, A123854. Cf. A114124 (log). Sequence in context: A199864 A153605 A247447 * A073012 A102522 A201672 Adjacent sequences: A112299 A112300 A112301 * A112303 A112304 A112305 KEYWORD cons,nonn AUTHOR Michael Somos, Sep 02 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:51 EST 2022. Contains 358649 sequences. (Running on oeis4.)