login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112299
Expansion of x * (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^8) in powers of x.
4
1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1
OFFSET
1,1
COMMENTS
Periodic with period length 8.
Sum_{k>=1} a(k)/k = Pi/8. - Jaume Oliver Lafont, Oct 20 2009
FORMULA
Euler transform of length 8 sequence [-1, -1, -1, 0, 0, 0, 0, 1].
Multiplicative with a(2) = -1, a(2^e) = 0 if e>1, a(p^e) = 1 if p == 1 (mod 4), a(p^e) = (-1)^e if p == 3 (mod 4).
G.f.: x * (1 + x + x^2) * (1 - x)^2 / ((1 + x^2) * (1 + x^4)).
G.f.: f(x) - f(x^2) where f(x) := x / (1 + x^2). - Michael Somos, Jun 19 2015
a(n) = -a(4 - n) = a(n + 8) for all n in Z. a(4*n) = 0.
a(2*n) = - A056594(n-1). a(2*n + 1) = A033999(n). a(4*n + 1) = 1. a(4*n + 3) = -1. a(4*n + 2) = - A033999(n). - Michael Somos, Jun 19 2015
a(n) = A257196(n) unless n=0. - Michael Somos, Sep 01 2015
EXAMPLE
G.f. = x - x^2 - x^3 + x^5 + x^6 - x^7 + x^9 - x^10 - x^11 + x^13 + x^14 - x^15 + ...
MATHEMATICA
LinearRecurrence[{0, -1, 0, -1, 0, -1}, {1, -1, -1, 0, 1, 1}, 110] (* Harvey P. Dale, Dec 07 2014 *)
a[ n_] := {1, -1, -1, 0, 1, 1, -1, 0}[[Mod[n, 8, 1]]];
PROG
(PARI) {a(n) = [0, 1, -1, -1, 0, 1, 1, -1][n%8 + 1]};
(PARI) {a(n) = [0, 1, -(-1)^(n\4), -1][n%4 + 1]}; /* Michael Somos, Jun 19 2015 */
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x+x^2)*(1-x)^2/((1+x^2)*(1+x^4)))); // G. C. Greubel, Aug 03 2018
CROSSREFS
KEYWORD
sign,mult,easy
AUTHOR
Michael Somos, Sep 02 2005
STATUS
approved