Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Sep 08 2022 08:45:21
%S 1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,
%T 1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,
%U -1,0,1,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,-1,0,1,1,-1,0,1
%N Expansion of x * (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^8) in powers of x.
%C Periodic with period length 8.
%C Sum_{k>=1} a(k)/k = Pi/8. - _Jaume Oliver Lafont_, Oct 20 2009
%H G. C. Greubel, <a href="/A112299/b112299.txt">Table of n, a(n) for n = 1..2500</a>
%H Michael Somos, <a href="http://grail.eecs.csuohio.edu/~somos/rfmc.html">Rational Function Multiplicative Coefficients</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,-1,0,-1,0,-1).
%F Euler transform of length 8 sequence [-1, -1, -1, 0, 0, 0, 0, 1].
%F Multiplicative with a(2) = -1, a(2^e) = 0 if e>1, a(p^e) = 1 if p == 1 (mod 4), a(p^e) = (-1)^e if p == 3 (mod 4).
%F G.f.: x * (1 + x + x^2) * (1 - x)^2 / ((1 + x^2) * (1 + x^4)).
%F G.f.: f(x) - f(x^2) where f(x) := x / (1 + x^2). - _Michael Somos_, Jun 19 2015
%F a(n) = -a(4 - n) = a(n + 8) for all n in Z. a(4*n) = 0.
%F a(2*n) = - A056594(n-1). a(2*n + 1) = A033999(n). a(4*n + 1) = 1. a(4*n + 3) = -1. a(4*n + 2) = - A033999(n). - _Michael Somos_, Jun 19 2015
%F a(n) = A257196(n) unless n=0. - _Michael Somos_, Sep 01 2015
%e G.f. = x - x^2 - x^3 + x^5 + x^6 - x^7 + x^9 - x^10 - x^11 + x^13 + x^14 - x^15 + ...
%t LinearRecurrence[{0,-1,0,-1,0,-1},{1,-1,-1,0,1,1},110] (* _Harvey P. Dale_, Dec 07 2014 *)
%t a[ n_] := {1, -1, -1, 0, 1, 1, -1, 0}[[Mod[n, 8, 1]]];
%o (PARI) {a(n) = [0, 1, -1, -1, 0, 1, 1, -1][n%8 + 1]};
%o (PARI) {a(n) = [0, 1, -(-1)^(n\4), -1][n%4 + 1]}; /* _Michael Somos_, Jun 19 2015 */
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x+x^2)*(1-x)^2/((1+x^2)*(1+x^4)))); // _G. C. Greubel_, Aug 03 2018
%Y Cf. A033999, A056594, A257196.
%K sign,mult,easy
%O 1,1
%A _Michael Somos_, Sep 02 2005