login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353457
a(1) = 1, for n > 1, a(n) = -Sum_{d|n, d<n} a(A064989(n/d)) * a(d).
7
1, -1, 1, 0, -1, -1, 1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, 0, -1, 1, 0, 1, 1, -1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, -1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0, 1, 1, 1, 0, -1, 1, -1, 0, -1, 1, 1, 0, -1, -1, 0, 0, -1, -1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, 1, 1, 0, -1, 1, -1, 0
OFFSET
1
FORMULA
a(1) = 1, for n > 1, a(n) = -Sum_{d|n, d<n} A353458(n/d) * a(d).
a(n) = A353458(A003961(n)).
For all n >= 1, a(A000040(n)) = ((-1)^n).
The sequence is multiplicative. Let p be a prime. If the number of primes <= p [A000720(p)] is even, then a(p^e) = 1. If the number of primes <= p is odd, then a(p) = -1 and a(p^e) = 0 if e > 1. - Sebastian Karlsson, Apr 21 2022
MATHEMATICA
f[p_, e_] := If[EvenQ[PrimePi[p]], 1, If[e == 1, -1, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 23 2023 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
memoA353457 = Map();
A353457(n) = if(1==n, 1, my(v); if(mapisdefined(memoA353457, n, &v), v, v = -sumdiv(n, d, if(d<n, A353457(A064989(n/d))*A353457(d), 0)); mapput(memoA353457, n, v); (v)));
(PARI) A353457(n) = { my(f=factor(n)); prod(i=1, #f~, if(!(primepi(f[i, 1])%2), 1, if(f[i, 2]==1, -1, 0))); }; \\ (After Sebastian Karlsson's multiplicative formula)
(Python)
from math import prod
from sympy import primepi, factorint
def A353457(n): return prod(-int(e==1) for p, e in factorint(n).items() if primepi(p)&1) # Chai Wah Wu, Jan 05 2023
CROSSREFS
Cf. A000040, A003961, A000720, A064989, A353458 [Dirichlet inverse, also a(A064989(n))], A353459 [sum with it].
Cf. also A353467.
Sequence in context: A359543 A361121 A371087 * A112299 A358839 A230901
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Apr 21 2022
STATUS
approved