login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353459
Sum of A353457 and its Dirichlet inverse.
7
2, 0, 0, 1, 0, -2, 0, 1, 1, 2, 0, -1, 0, -2, -2, 1, 0, -1, 0, 1, 2, 2, 0, -1, 1, -2, 1, -1, 0, 0, 0, 1, -2, 2, -2, 0, 0, -2, 2, 1, 0, 0, 0, 1, -1, 2, 0, -1, 1, 1, -2, -1, 0, -1, 2, -1, 2, -2, 0, -1, 0, 2, 1, 1, -2, 0, 0, 1, -2, 0, 0, 0, 0, -2, -1, -1, -2, 0, 0, 1, 1, 2, 0, 1, 2, -2, 2, 1, 0, 1, 2, 1, -2, 2, -2, -1, 0
OFFSET
1,1
COMMENTS
Only values in range {-2, -1, 0, +1, +2} occur.
FORMULA
a(n) = A353457(n) + A353458(n) = A353457(n) + A353457(A064989(n)).
For n > 1, a(n) = -Sum_{d|n, 1<d<n} A353457(d) * A353458(n/d). [As the sequences are Dirichlet inverses of each other]
For all n >= 1, a(n) = a(A003961(n)) = a(A348717(n)).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
memoA353457 = Map();
A353457(n) = if(1==n, 1, my(v); if(mapisdefined(memoA353457, n, &v), v, v = -sumdiv(n, d, if(d<n, A353457(A064989(n/d))*A353457(d), 0)); mapput(memoA353457, n, v); (v)));
(Python)
from math import prod
from sympy import factorint, primepi
def A353459(n):
f = [(primepi(p)&1, -int(e==1)) for p, e in factorint(n).items()]
return prod(e for p, e in f if not p)+prod(e for p, e in f if p) # Chai Wah Wu, Jan 05 2023
CROSSREFS
Cf. also A353469.
Sequence in context: A307303 A324252 A321445 * A007423 A076544 A349912
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 21 2022
STATUS
approved