login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324252 Triangle T(n, k) read by rows from upwards antidiagonals of array A, where A(n, k) is the number of families (also called classes) of proper solutions of the Pell equation x^2 - D(n)*y^2 = k, for k >= 1. 3
1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,19

COMMENTS

The array A(n, k) gives the number of the representative parallel binary quadratic primitive forms for discriminant Disc(n) = 4*D(n) = 4*A000037(n) and representation of positive integer k which are (properly) equivalent to the Pell form F(n) = [1, 0, -D(n)].

For the definition of representative parallel primitive forms for discriminant Disc > 0 (the indefinte case) and representation of nonzero integers k see the Scholz-Schoeneberg reference, p. 105, or the Buell reference p. 49 (without use of the name parallel). For the procedure to find the primitive representative parallel forms (rpapfs) for Disc(n) = 4*D(n) = 4*A000037(n) and nonzero integer k see the W. Lang link given in A324251, section 3.

Among them the parallel forms which are equivalent to the reduced principal form F_p(n) = [1, 2*s(n), -(D(n) - s(n))^2], with s(n) = A000194(n), are important to find all solutions (x, y) with gcd(x, y) = 1 (proper) of the Pell form F(n) = [1, 0, -D(n)] with Disc(F(n)) = 4*D(n) > 0 representing a positive integer k. The number of these parallel forms pa(n, k) gives the number of the proper fundamental solutions. The general solution is obtained from the fundamental solutions with the help of integer powers of the automorphic matrix corresponding to the cycle determined by the reduced principal form F_p(n).

Thus the array A(n,k) gives the number of proper families (also called classes) of solutions of the Pell equation x^2 - Dn(n)*y^2 = k, for positive integer k. The positions of the nonzero entries in row n give the list of the k values for which proper solutions exist.

These position lists are A057126 (conjecture) and A243655, for k = 1 and 2.

The first column has only 1s, showing that every Pell form [1, 0, -D(n)] represents k = +1, and that there is only one family of proper solutions.

REFERENCES

D. A. Buell, Binary Quadratic Forms, Springer, 1989, chapter 3, pp. 21-43.

A. Scholz and B. Schoeneberg, Einf├╝hrung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, pp. 112-126.

LINKS

Table of n, a(n) for n=1..91.

FORMULA

T(n, k) = A(n-k+1, k) for 1 <= k <= n, with A(n,k) the number of proper (positive) fundamental solutions of the Pell equation x^2 - D(n)*y^2 = k >= 1, with D(n) = A000037(n), for n >= 1.

EXAMPLE

The array A(n, k) begins:

n,  D(n) \k  1 2 3 4 5 6 7 8 9 10 11 12 13  14 15 ...

------------------------------------------------------------

1,   2:      1 1 0 0 0 0 2 0 0  0  0  0  0  2  0

2,   3:      1 0 0 0 0 1 0 0 0  0  0  0  2  0  0

3,   5:      1 0 0 2 1 0 0 0 0  0  2  0  0  0  0

4,   6:      1 0 1 0 0 0 0 0 0  2  0  0  0  0  0

5,   7:      1 1 0 0 0 0 0 0 2  0  0  0  0  0  0

6,   8:      1 0 0 0 0 0 0 1 0  0  0  0  0  0  0

7,  10:      1 0 0 0 0 2 0 0 2  1  0  0  0  0  2

8,  11:      1 0 0 0 2 0 0 0 0  0  0  0  0  2  0

9,  12:      1 0 0 1 0 0 0 0 0  0  0  0  2  0  0

10, 13:      1 0 2 2 0 0 0 0 2  0  0  4  1  0  0

11, 14:      1 1 0 0 0 0 0 0 0  0  2  0  0  0  0

12, 15:      1 0 0 0 0 0 0 0 0  1  0  0  0  0  0

13, 17:      1 0 0 0 0 0 0 2 0  0  0  0  2  0  0

14, 18:      1 0 0 0 0 0 2 0 1  0  0  0  0  0  0

15, 19:      1 0 0 0 2 2 0 0 2  0  0  0  0  0  0

16, 20:      1 0 0 0 1 0 0 0 0  0  0  0  0  0  0

17, 21:      1 0 0 2 0 0 1 0 0  0  0  0  0  0  2

18, 22:      1 0 2 0 0 0 0 0 2  0  1  0  0  2  0

19, 23:      1 1 0 0 0 0 0 0 0  0  0  0  2  0  0

20, 24:      1 0 0 0 0 0 0 0 0  0  0  1  0  0  0

...

-------------------------------------------------------------

The triangle T(n, k) begins:

n\k    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

1:     1

2:     1 1

3:     1 0 0

4:     1 0 0 0

5:     1 0 0 0 0

6:     1 1 1 2 0 0

7:     1 0 0 0 1 1 2

8:     1 0 0 0 0 0 0 0

9:     1 0 0 0 0 0 0 0 0

10:    1 0 0 0 0 0 0 0 0  0

11:    1 0 0 0 0 0 0 0 0  0  0

12:    1 1 2 1 2 2 0 0 0  0  0  0

13:    1 0 0 2 0 0 0 1 2  2  2  0  0

14:    1 0 0 0 0 0 0 0 0  0  0  0  2  2

15:    1 0 0 0 0 0 0 0 2  0  0  0  0  0  0

16:    1 0 0 0 0 0 0 0 0  1  0  0  0  0  0  0

17:    1 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  2

18:    1 0 0 0 0 0 0 0 2  0  0  0  0  0  0  0  0  0

19:    1 0 0 0 2 0 0 0 0  0  0  0  0  0  0  0  0  0  0

20:    1 1 2 2 1 2 2 2 0  0  0  0  0  0  0  0  0  0  0 0

... For this triangle more of the columns of the array have been used than those that are shown.

----------------------------------------------------------------------------

A(5, 9) = 2 = T(13, 9) because D(5) = 7, and the Pell form F(5) with disc(F(5)) = 4*7 = 28 representing k = +9 has 2 families (classes) of proper solutions generated from the two positive fundamental positive solutions (x10, y10) = (11, 4) and (x20, y20) = (4, 1). They are obtained from the trivial solutions of the parallel forms [9, 8, 1] and [9, 10, 2], respectively. See the W. Lang link in A324251, section 3.

CROSSREFS

Cf. A000037, A000194, A057126, A243655, A307303 (negative k), A307377, A324251.

Sequence in context: A123759 A072453 A307303 * A321445 A007423 A076544

Adjacent sequences:  A324249 A324250 A324251 * A324253 A324254 A324255

KEYWORD

nonn,tabl

AUTHOR

Wolfdieter Lang, Apr 20 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 10:45 EST 2019. Contains 329751 sequences. (Running on oeis4.)