login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123759
Expansion of f(-q)*psi(-q^5) in powers of q where f(), psi() are Ramanujan theta functions.
1
1, -1, -1, 0, 0, 0, 1, 2, 0, 0, -1, 0, -2, 0, 0, -2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, -2, 0, 0, -2, -1, 0, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,8
COMMENTS
Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k>=0} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 20 sequence [ -1, -1, -1, -1, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -1, -1, -1, -1, -2, ...].
Product_{k>0} (1-x^k)*(1-x^(5k))*(1+x^(10k)).
a(8n+3) = a(8n+5) = 0.
Expansion of q^(-2/3) * eta(q) * eta(q^5) * eta(q^20)/ eta(q^10) in powers of q.
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(-2/3)* eta[q]*eta[q^5]*eta[q^20]/eta[q^10], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 08 2018 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^5+A)*eta(x^20+A)/eta(x^10+A), n))}
(PARI) {a(n) = local(s, k); if(n<0, 0, n=24*n+16; forstep(k=1, sqrtint(n\15), 2, if(issquare(n-15*k^2, &j)& (j^2%6==1), s+= (-1)^((j+1)\6+ (k+2)\4))); s)}
CROSSREFS
Sequence in context: A091400 A129448 A239003 * A072453 A307303 A324252
KEYWORD
sign
AUTHOR
Michael Somos, Oct 12 2006
STATUS
approved