login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091400 a(n) = Product_{ odd primes p | n } (1 + Legendre(-1,p) ). 5
1, 1, 0, 1, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (2) (but without the restriction that a(4k) = 0).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Here we use the definition that Legendre(-1, 2) = 0, Legendre(-1, p) = 1 if p == 1 mod 4, = -1 if p == 3 mod 4. This is Shimura's definition, which is different from Maple's.

Moebius transform is period 36 sequence [1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, ...]. - Michael Somos, Apr 19 2007

Expansion of (phi(q)^2 - phi(q^9)^2) / 4 in powers of q where phi() is a Ramanujan theta function.

a(n) is multiplicative with a(2^e) = 1, a(3^e) = 0^e, a(p^e) = (1+(-1)^e)/2 if p == 3 (mod 4), a(p^e) = e+1 if p == 1 (mod 4).

a(2*n) = a(n). a(3*n) = a(4*n + 3) = 0.

a(n) = abs(A129448(n)). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n).

a(n) = Sum_{d|n} b(d)*(-1)^bigomega(d)*moebius(d) where b(2n)=0 and b(2n+1)=(-1)^n. - Benoit Cloitre, Apr 17 2016

G.f.: ((Sum_{k in Z} x^k^2)^2 - (Sum_{k in Z} x^(9*k^2))^2) / 4. - Michael Somos, Jan 26 2017

EXAMPLE

G.f. = x + x^2 + x^4 + 2*x^5 + x^8 + 2*x^10 + 2*x^13 + x^16 + 2*x^17 + 2*x^20 + ...

MAPLE

with(numtheory): A091400 := proc(n) local i, t1, t2; t1 := ifactors(n)[2]; t2 := 1; for i from 1 to nops(t1) do if t1[i][1] > 2 then t2 := t2*(1+legendre(-1, t1[i][1])); fi; od: t2; end;

with(numtheory): seq(mul(1+legendre(-1, p), p in select(isprime, divisors(n) minus {2})), n=1..105); # Peter Luschny, Apr 20 2016

MATHEMATICA

Legendre[-1, p_] := Which[p==2, 0, Mod[p, 4]==1, 1, True, -1]; a[1] = 1; a[n_] := Times @@ (Legendre[-1, #] + 1&) /@ FactorInteger[n][[All, 1]]; Array[a, 105] (* Jean-Fran├žois Alcover, Dec 01 2015 *)

Join[{1}, Table[Product[1+JacobiSymbol[-1, p], {p, Complement[FactorInteger[n][[All, 1]], {2}]}], {n, 2, 105}]] (* Peter Luschny, Apr 20 2016 *)

a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 - EllipticTheta[ 3, 0, q^9]^2) / 4, {q, 0, n}]; (* Michael Somos, Jan 26 2017 *)

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-9, d) * kronecker(36, n/d)))}; /* Michael Somos, Jan 26 2017 */

(PARI) {a(n)=if(n<1, 0, sumdiv(n, d, (-1)^bigomega(d)*moebius(d)*if(d%2, (-1)^(d\2), 0))} /* Benoit Cloitre, Apr 17 2016 */

CROSSREFS

Cf. A091379, A122856, A122865, A129448.

Sequence in context: A092303 A063725 A084888 * A129448 A239003 A123759

Adjacent sequences:  A091397 A091398 A091399 * A091401 A091402 A091403

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane, Mar 02 2004

EXTENSIONS

Definition clarified by Peter Luschny, Apr 20 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 20:30 EDT 2018. Contains 315270 sequences. (Running on oeis4.)