login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122856
Expansion of f(x, x^5)^2 in powers of x where f(, ) is Ramanujan's general theta function.
33
1, 2, 1, 0, 0, 2, 2, 0, 2, 2, 1, 0, 0, 2, 0, 0, 3, 2, 0, 0, 0, 4, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 1, 2, 2, 0, 0, 2, 2, 0, 2, 4, 1, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 4, 2, 0, 0, 0, 4, 0, 0, 2, 2, 3, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 2, 4, 0, 0, 2, 2, 0, 0, 2, 0, 0, 4, 2, 2, 0, 0, 4, 0, 0, 2
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (chi(x) * psi(-x^3))^2 in powers of x where chi(), psi() are Ramanujan theta functions.
Expansion of q^(-2/3) * (eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6)))^2 in powers of q.
Euler transform of period 12 sequence [2, -2, 0, 0, 2, -2, 2, 0, 0, -2, 2, -2, ...].
a(4*n + 3) = a(8*n + 4) = 0. a(n) = A002654(3*n + 2) = A035154(3*n + 2) = A113446(3*n + 2). a(2*n) = A122865(n). a(4*n + 1) = 2 * A121444(n). a(4*n + 2) = A122856(n).
a(n) = (-1)^n * A258278(n). Convolution square of A089801.
EXAMPLE
G.f. = 1 + 2*x + x^2 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + 2*x^13 + ...
G.f. = q^2 + 2*q^5 + q^8 + 2*q^17 + 2*q^20 + 2*q^26 + 2*q^29 + q^32 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[ {m = 3 n + 2}, Sum[ KroneckerSymbol[ -4, d], {d, Divisors@m}]]]; (* Michael Somos, Nov 14 2011 *)
QP = QPochhammer; s = (QP[q^2]^2*QP[q^3]*(QP[q^12]/(QP[q]*QP[q^4]*QP[q^6]) ))^2 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x^(1/3)] - EllipticTheta[ 3, 0, x^3])^2 / (4 x^(2/3)), {x, 0, n}]; (* Michael Somos, Jan 19 2017 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)])^2 / (2 x^(3/4)), {x, 0, n}]; (* Michael Somos, Jan 19 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 3*n+2; sumdiv(n, d, (d%4==1) - (d%4==3)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)))^2, n))};
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 14 2006
STATUS
approved