login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035154 a(n) = Sum_{d|n} Kronecker(-36, d). 14
1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 0, 1, 2, 0, 2, 1, 2, 1, 0, 2, 0, 0, 0, 1, 3, 2, 1, 0, 2, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 2, 2, 0, 0, 0, 2, 0, 0, 1, 1, 3, 2, 2, 2, 1, 0, 0, 0, 2, 0, 2, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 3, 0, 0, 2, 0, 2, 1, 2, 0, 0, 4, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 1, 2, 1, 0, 3, 2, 2, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

REFERENCES

B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 197, Entry 44.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

FORMULA

Expansion of -1 + (theta_3(q)^2 + theta_3(q^3)^2) / 2 in powers of q. - Michael Somos, Jul 09 2013

Moebius transform is period 12 sequence [1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Jul 30 2006

Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1(mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3(mod 4). - Michael Somos, Jul 30 2006

Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker( -36, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker( -36, p) * p^-s)). - Michael Somos, Jun 24 2011

a(2*n) = a(3*n) = a(n). a(2*n + 1) = A125079(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n).

2 * a(n) = A122857(n) unless n=0. - Michael Somos, Jul 09 2013

G.f.: Sum_{n>=0} (-1)^n*( x^(6*n+1)/(1-x^(6*n+1)) + x^(6*n+5)/(1-x^(6*n+5)) ). - Paul D. Hanna, Dec 14 2011

G.f.: x/(1-x) + x^5/(1-x^5) - x^7/(1-x^7) - x^11/(1-x^11) + x^13/(1-x^13) + x^17/(1-x^17) --++ ...

a(n) = A002654(n) + A002654(3*n). - Michael Somos, Jan 25 2017

EXAMPLE

G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + x^6 + x^8 + x^9 + 2*x^10 + x^12 + 2*x^13 + ...

MATHEMATICA

a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -36, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 24 2011 *)

a[ n_] := SeriesCoefficient[ (-2 + EllipticTheta[ 3, 0, q]^2 + EllipticTheta[ 3, 0, q^3]^2) / 4, {q, 0, n}]; (* Michael Somos, Jul 09 2013 *)

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, kronecker( -36, d)))}; /* Michael Somos, Jul 30 2006 */

(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, 1 / ((1 - X) * (1 - kronecker( -36, p) * X))) [n])}; /* Michael Somos, Jul 30 2006 */

(PARI) {a(n)=polcoeff(sum(m=0, n\6+1, (-1)^m*(x^(6*m+1)/(1-x^(6*m+1)+x*O(x^n)) + x^(6*m+5)/(1-x^(6*m+5)+x*O(x^n)))), n)} /* Paul D. Hanna */

CROSSREFS

Cf. A002654, A008441, A122856, A122857, A122865, A125079.

Sequence in context: A342148 A066295 A132004 * A113446 A121450 A143110

Adjacent sequences:  A035151 A035152 A035153 * A035155 A035156 A035157

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 25 21:15 EDT 2021. Contains 348256 sequences. (Running on oeis4.)