login
A122857
Expansion of (phi(q)^2 + phi(q^3)^2) / 2 in powers of q where phi() is a Ramanujan theta function.
7
1, 2, 2, 2, 2, 4, 2, 0, 2, 2, 4, 0, 2, 4, 0, 4, 2, 4, 2, 0, 4, 0, 0, 0, 2, 6, 4, 2, 0, 4, 4, 0, 2, 0, 4, 0, 2, 4, 0, 4, 4, 4, 0, 0, 0, 4, 0, 0, 2, 2, 6, 4, 4, 4, 2, 0, 0, 0, 4, 0, 4, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 2, 4, 4, 6, 0, 0, 4, 0, 4, 2, 4, 0, 0, 8, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 2, 4, 2, 0, 6, 4, 4, 0, 4
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 197, Entry 44.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q^2)^3 * eta(q^3)^2 * eta(q^6) / (eta(q)^2 * eta(q^4)* eta(q^12)) in powers of q.
Expansion of 2 * psi(q) * psi(q^2) * psi(q^3) / psi(q^6) - phi(q^3)^2 in powers of q. - Michael Somos, Jul 09 2013
Euler transform of period 12 sequence [ 2, -1, 0, 0, 2, -4, 2, 0, 0, -1, 2, -2, ...].
Moebius transform is period 12 sequence [ 2, 0, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, ...].
a(12*n + 7) = a(12*n + 11) = 0.
a(n) = 2 * b(n) where b(n) is multiplicative and b(2^e) = b(3^e) = 1, b(p^e) = e+1 if p == 1, 5 (mod 12), a(p^e) == (1-(-1)^e)/2 if p == 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A125061.
A035154(n) = a(n) / 2 if n > 0. A008441(n) = a(4*n + 1) / 2. A125079(n) = a(2*n + 1) / 2. A113446(3*n + 1) = A002654(3*n + 1) = a(3*n + 1) / 2.
a(n) = (-1)^n * A132003(n). Expansion of (phi(-q^3) / phi(-q)) * phi(-q^2) * phi(-q^6) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Mar 05 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.0943951... (A019693). - Amiram Eldar, Nov 21 2023
EXAMPLE
G.f. = 1 + 2*q + 2*q^2 + 2*q^3 + 2*q^4 + 4*q^5 + 2*q^6 + 2*q^8 + 2*q^9 + 4*q^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Jul 09 2013 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 + EllipticTheta[ 3, 0, q^3]^2) / 2, {q, 0, n}]; (* Michael Somos, Jul 09 2013 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -36, d)))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%12<6, e+1, !(e%2) )))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
[p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Sep 14 2006
STATUS
approved