login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367515
The number of unitary divisors of n that are exponentially odious numbers (A270428).
3
1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = A001285(e).
a(n) = A034444(n)/A367516(n).
a(n) = 2^A293439(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= A034444(n), with equality if and only if n is an exponentially odious number (A270428).
MATHEMATICA
f[p_, e_] := If[OddQ[DigitCount[e, 2, 1]], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> hammingweight(x)%2+1, factor(n)[, 2]));
(Python)
from sympy import factorint
def A367515(n): return 1<<sum(1 for e in factorint(n).values() if e.bit_count()&1) # Chai Wah Wu, Nov 23 2023
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Nov 21 2023
STATUS
approved